Z 
Name  Schema Table  Database  Description  Type  Length  Unit  Default Value  Unified Content Descriptor 
z 
allwise_sc 
WISE 
Unit sphere position z value 
float 
8 



z11 
Multiframe 
WSA 
Spherical: Z11 {image primary HDU keyword: Z11} 
real 
4 

0.9999995e9 

z11 
Multiframe 
WSACalib 
Spherical: Z11 {image primary HDU keyword: Z11} 
real 
4 

0.9999995e9 

z11 
Multiframe 
WSATransit 
Spherical: Z11 {image primary HDU keyword: Z11} 
real 
4 

0.9999995e9 

z11 
Multiframe 
WSAUHS 
Spherical: Z11 {image primary HDU keyword: Z11} 
real 
4 

0.9999995e9 

z7 
Multiframe 
WSA 
Coma: Z7 {image primary HDU keyword: Z7} 
real 
4 

0.9999995e9 

z7 
Multiframe 
WSACalib 
Coma: Z7 {image primary HDU keyword: Z7} 
real 
4 

0.9999995e9 

z7 
Multiframe 
WSATransit 
Coma: Z7 {image primary HDU keyword: Z7} 
real 
4 

0.9999995e9 

z7 
Multiframe 
WSAUHS 
Coma: Z7 {image primary HDU keyword: Z7} 
real 
4 

0.9999995e9 

z8 
Multiframe 
WSA 
Coma: Z8 {image primary HDU keyword: Z8} 
real 
4 

0.9999995e9 

z8 
Multiframe 
WSACalib 
Coma: Z8 {image primary HDU keyword: Z8} 
real 
4 

0.9999995e9 

z8 
Multiframe 
WSATransit 
Coma: Z8 {image primary HDU keyword: Z8} 
real 
4 

0.9999995e9 

z8 
Multiframe 
WSAUHS 
Coma: Z8 {image primary HDU keyword: Z8} 
real 
4 

0.9999995e9 

zAperMag1 
calSynopticSource 
WSACalib 
Extended source Z aperture corrected mag (1.0 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag1Err 
calSynopticSource 
WSACalib 
Error in extended source Z mag (1.0 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zAperMag2 
calSynopticSource 
WSACalib 
Extended source Z aperture corrected mag (1.4 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag2Err 
calSynopticSource 
WSACalib 
Error in extended source Z mag (1.4 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zAperMag3 
calSource 
WSACalib 
Default point/extended source Z aperture corrected mag (2.0 arcsec aperture diameter) If in doubt use this flux estimator 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag3 
calSynopticSource 
WSACalib 
Default point/extended source Z aperture corrected mag (2.0 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag3 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Default point source Z aperture corrected mag (2.0 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag3 
gcsSource 
WSA 
Default point source Z aperture corrected mag (2.0 arcsec aperture diameter) If in doubt use this flux estimator 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag3Err 
calSource, calSynopticSource 
WSACalib 
Error in default point/extended source Z mag (2.0 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zAperMag3Err 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error in default point source Z mag (2.0 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zAperMag4 
calSource, calSynopticSource 
WSACalib 
Extended source Z aperture corrected mag (2.8 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag4 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Point source Z aperture corrected mag (2.8 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag4Err 
calSource, calSynopticSource 
WSACalib 
Error in extended source Z mag (2.8 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zAperMag4Err 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error in point source Z mag (2.8 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zAperMag5 
calSynopticSource 
WSACalib 
Extended source Z aperture corrected mag (4.0 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag5Err 
calSynopticSource 
WSACalib 
Error in extended source Z mag (4.0 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zAperMag6 
calSource 
WSACalib 
Extended source Z aperture corrected mag (5.7 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag6 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Point source Z aperture corrected mag (5.7 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zAperMag6Err 
calSource 
WSACalib 
Error in extended source Z mag (5.7 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zAperMag6Err 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error in point source Z mag (5.7 arcsec aperture diameter) 
real 
4 
mag 
0.9999995e9 
ERROR 
zApFillFac 
StackObjectAttributes 
PS1DR2 
Aperture fill factor from z filter stack detection. 
real 
4 

999 

zApFlux 
StackObjectAttributes 
PS1DR2 
Aperture flux from z filter stack detection. 
real 
4 
Janskys 
999 

zApFluxErr 
StackObjectAttributes 
PS1DR2 
Error in aperture flux from z filter stack detection. 
real 
4 
Janskys 
999 

zApMag 
StackObjectThin 
PS1DR2 
Aperture magnitude from z filter stack detection. 
real 
4 
AB magnitudes 
999 

zApMagErr 
StackObjectThin 
PS1DR2 
Error in aperture magnitude from z filter stack detection. 
real 
4 
AB magnitudes 
999 

zApRadius 
StackObjectAttributes 
PS1DR2 
Aperture radius for z filter stack detection. 
real 
4 
arcsec 
999 

zaStratAst 
calVarFrameSetInfo 
WSACalib 
Strateva parameter, a, in fit to astrometric rms vs magnitude in Z band, see Sesar et al. 2007. 
real 
4 

0.9999995e9 

The best fit solution to the expected RMS position around the mean for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. 
zaStratPht 
calVarFrameSetInfo 
WSACalib 
Strateva parameter, a, in fit to photometric rms vs magnitude in Z band, see Sesar et al. 2007. 
real 
4 

0.9999995e9 

The best fit solution to the expected RMS brightness (in magnitudes) for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. This technique was used in Sesar et al. 2007, AJ, 134, 2236. 
zbestAper 
calVariability 
WSACalib 
Best aperture (16) for photometric statistics in the Z band 
int 
4 

9999 

Aperture magnitude (16) which gives the lowest RMS for the object. All apertures have the appropriate aperture correction. This can give better values in crowded regions than aperMag3 (see Irwin et al. 2007, MNRAS, 375, 1449) 
zbStratAst 
calVarFrameSetInfo 
WSACalib 
Strateva parameter, b, in fit to astrometric rms vs magnitude in Z band, see Sesar et al. 2007. 
real 
4 

0.9999995e9 

The best fit solution to the expected RMS position around the mean for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. 
zbStratPht 
calVarFrameSetInfo 
WSACalib 
Strateva parameter, b, in fit to photometric rms vs magnitude in Z band, see Sesar et al. 2007. 
real 
4 

0.9999995e9 

The best fit solution to the expected RMS brightness (in magnitudes) for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. This technique was used in Sesar et al. 2007, AJ, 134, 2236. 
zchiSqAst 
calVarFrameSetInfo 
WSACalib 
Goodness of fit of Strateva function to astrometric data in Z band 
real 
4 

0.9999995e9 

The best fit solution to the expected RMS position around the mean for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. 
zchiSqpd 
calVariability 
WSACalib 
Chi square (per degree of freedom) fit to data (mean and expected rms) 
real 
4 

0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zchiSqPht 
calVarFrameSetInfo 
WSACalib 
Goodness of fit of Strateva function to photometric data in Z band 
real 
4 

0.9999995e9 

The best fit solution to the expected RMS brightness (in magnitudes) for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. This technique was used in Sesar et al. 2007, AJ, 134, 2236. 
zClass 
calSource, calSynopticSource 
WSACalib 
discrete image classification flag in Z 
smallint 
2 

9999 
CLASS_MISC 
zClass 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
discrete image classification flag in Z 
smallint 
2 

9999 
CLASS_MISC 
zClassStat 
calSource, calSynopticSource 
WSACalib 
N(0,1) stellarnessofprofile statistic in Z 
real 
4 

0.9999995e9 
STAT_PROP 
zClassStat 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
N(0,1) stellarnessofprofile statistic in Z 
real 
4 

0.9999995e9 
STAT_PROP 
zcStratAst 
calVarFrameSetInfo 
WSACalib 
Strateva parameter, c, in fit to astrometric rms vs magnitude in Z band, see Sesar et al. 2007. 
real 
4 

0.9999995e9 

The best fit solution to the expected RMS position around the mean for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. 
zcStratPht 
calVarFrameSetInfo 
WSACalib 
Strateva parameter, c, in fit to photometric rms vs magnitude in Z band, see Sesar et al. 2007. 
real 
4 

0.9999995e9 

The best fit solution to the expected RMS brightness (in magnitudes) for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. This technique was used in Sesar et al. 2007, AJ, 134, 2236. 
zd 
twomass_scn 
2MASS 
Scan's distance from the zenith at beginning of scan. 
real 
4 
degrees 

POS_ZD_RES 
zd 
twomass_sixx2_scn 
2MASS 
beginning zenith distance of scan data 
real 
4 
deg 


zDeblend 
calSource 
WSACalib 
placeholder flag indicating parent/child relation in Z 
int 
4 

99999999 
CODE_MISC 
This CASU pipeline processing source extraction flag is a placeholder only, and is always set to zero in all passbands in the merged source lists. If you need to know when a particular image detection is a component of a deblend or not, test bit 4 of attribute ppErrBits (see corresponding glossary entry) which is set by WFAU's postprocessing software based on testing the areal profiles aprof28 (these are set by CASU to 1 for deblended components, or positive values for nondeblended detections). We encode this in an information bit of ppErrBits for convenience when querying the merged source tables. 
zDeblend 
calSynopticSource 
WSACalib 
placeholder flag indicating parent/child relation in Z 
int 
4 

99999999 
CODE_MISC 
zDeblend 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
placeholder flag indicating parent/child relation in Z 
int 
4 

99999999 
CODE_MISC 
zDeblend 
gcsSource 
WSA 
placeholder flag indicating parent/child relation in Z 
int 
4 

99999999 
CODE_MISC 
This CASU pipeline processing source extraction flag is a placeholder only, and is always set to zero in all passbands in the merged source lists. If you need to know when a particular image detection is a component of a deblend or not, test bit 4 of attribute ppErrBits (see corresponding glossary entry) which is set by WFAU's postprocessing software based on testing the areal profiles aprof28 (these are set by CASU to 1 for deblended components, or positive values for nondeblended detections). We encode this in an information bit of ppErrBits for convenience when querying the merged source tables. 
zdec 
StackObjectThin 
PS1DR2 
Declination from z filter stack detection. 
float 
8 
degrees 
999 

zdecErr 
StackObjectThin 
PS1DR2 
Declination error from z filter stack detection. 
real 
4 
arcsec 
999 

zEll 
calSource, calSynopticSource 
WSACalib 
1b/a, where a/b=semimajor/minor axes in Z 
real 
4 

0.9999995e9 
PHYS_ELLIPTICITY 
zEll 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
1b/a, where a/b=semimajor/minor axes in Z 
real 
4 

0.9999995e9 
PHYS_ELLIPTICITY 
zeNum 
calMergeLog, calSynopticMergeLog 
WSACalib 
the extension number of this Z frame 
tinyint 
1 


NUMBER 
zeNum 
gcsMergeLog 
WSA 
the extension number of this Z frame 
tinyint 
1 


NUMBER 
zeNum 
gcsZYJHKmergeLog 
WSA 
the extension number of this frame 
tinyint 
1 


NUMBER 
zEpoch 
StackObjectThin 
PS1DR2 
Modified Julian Date of the mean epoch of images contributing to the the zband stack (equinox J2000). 
float 
8 
days 
999 

zeroPoint 
ExternalProduct 
WSA 
Zeropoint of each product 
real 
4 

0.9999995e9 

zeroPoint 
ExternalProduct 
WSAUHS 
Zeropoint of each product 
real 
4 

0.9999995e9 

zeropoint 
RequiredMosaicTopLevel 
WSAUHS 
Zeropoint of each product 
real 
4 

0.9999995e9 

zErrBits 
calSource, calSynopticSource 
WSACalib 
processing warning/error bitwise flags in Z 
int 
4 

99999999 
CODE_MISC 
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture. 
zErrBits 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
processing warning/error bitwise flags in Z 
int 
4 

99999999 
CODE_MISC 
zErrBits 
gcsSource 
WSA 
processing warning/error bitwise flags in Z 
int 
4 

99999999 
CODE_MISC 
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture. 
zEta 
calSource, calSynopticSource 
WSACalib 
Offset of Z detection from master position (+north/south) 
real 
4 
arcsec 
0.9999995e9 
POS_EQ_DEC_OFF 
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 2.0 (UKIDSS LAS and GPS; UHS; also nonsurvey programmes) or 1.0 (UKIDSS GPS, DXS and UDS) arcseconds is used, the higher value enabling pairing of moving sources when epoch separations may be several years. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the LAS, you might wish to insist that the offsets in the selected sample are all below 1 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands. 
zEta 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Offset of Z detection from master position (+north/south) 
real 
4 
arcsec 
0.9999995e9 
POS_EQ_DEC_OFF 
zEta 
gcsSource 
WSA 
Offset of Z detection from master position (+north/south) 
real 
4 
arcsec 
0.9999995e9 
POS_EQ_DEC_OFF 
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 2.0 (UKIDSS LAS and GPS; UHS; also nonsurvey programmes) or 1.0 (UKIDSS GPS, DXS and UDS) arcseconds is used, the higher value enabling pairing of moving sources when epoch separations may be several years. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the LAS, you might wish to insist that the offsets in the selected sample are all below 1 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands. 
zexpML 
calVarFrameSetInfo 
WSACalib 
Expected magnitude limit of frameSet in this in Z band. 
real 
4 

0.9999995e9 

The expected magnitude limit of an intermediate stack, based on the total exposure time. expML=Filter.oneSecML+1.25*log10(totalExpTime). Since different intermediate stacks can have different exposure times, the totalExpTime is the minimum, as long as the number of stacks with this minimum make up 10% of the total. This is a more conservative treatment than just taking the mean or median total exposure time. 
zExpRms 
calVariability 
WSACalib 
Rms calculated from polynomial fit to modal RMS as a function of magnitude in Z band 
real 
4 
mag 
0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zexpTime 
StackObjectAttributes 
PS1DR2 
Exposure time of the z filter stack. Necessary for converting listed fluxes and magnitudes back to measured ADU counts. 
real 
4 
seconds 
999 

zExtNSigma 
StackObjectAttributes 
PS1DR2 
An extendedness measure for the z filter stack detection based on the deviation between PSF and Kron (1980) magnitudes, normalized by the PSF magnitude uncertainty. 
real 
4 

999 

zFlags 
MeanObject 
PS1DR2 
Information flag bitmask for mean object from z filter detections. Values listed in ObjectFilterFlags. 
int 
4 

0 

zGausig 
calSource, calSynopticSource 
WSACalib 
RMS of axes of ellipse fit in Z 
real 
4 
pixels 
0.9999995e9 
MORPH_PARAM 
zGausig 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
RMS of axes of ellipse fit in Z 
real 
4 
pixels 
0.9999995e9 
MORPH_PARAM 
zHallMag 
calSource 
WSACalib 
Total point source Z mag 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zHallMag 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Total point source Z mag 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zHallMagErr 
calSource 
WSACalib 
Error in total point source Z mag 
real 
4 
mag 
0.9999995e9 
ERROR 
zHallMagErr 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error in total point source Z mag 
real 
4 
mag 
0.9999995e9 
ERROR 
zinfoFlag 
StackObjectThin 
PS1DR2 
Information flag bitmask indicating details of the z filter stack photometry. Values listed in DetectionFlags. 
bigint 
8 

0 

zinfoFlag2 
StackObjectThin 
PS1DR2 
Information flag bitmask indicating details of the z filter stack photometry. Values listed in DetectionFlags2. 
int 
4 

0 

zinfoFlag3 
StackObjectThin 
PS1DR2 
Information flag bitmask indicating details of the z filter stack photometry. Values listed in DetectionFlags3. 
int 
4 

0 

zIntRms 
calVariability 
WSACalib 
Intrinsic rms in Zband 
real 
4 
mag 
0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zippDetectID 
StackObjectAttributes, StackObjectThin 
PS1DR2 
IPP internal detection identifier. 
bigint 
8 



zisDefAst 
calVarFrameSetInfo 
WSACalib 
Use a default model for the astrometric noise in Z band. 
tinyint 
1 

0 

zisDefPht 
calVarFrameSetInfo 
WSACalib 
Use a default model for the photometric noise in Z band. 
tinyint 
1 

0 

zKronFlux 
StackObjectAttributes 
PS1DR2 
Kron (1980) flux from z filter stack detection. 
real 
4 
Janskys 
999 

zKronFluxErr 
StackObjectAttributes 
PS1DR2 
Error in Kron (1980) flux from z filter stack detection. 
real 
4 
Janskys 
999 

zKronMag 
StackObjectThin 
PS1DR2 
Kron (1980) magnitude from z filter stack detection. 
real 
4 
AB magnitudes 
999 

zKronMagErr 
StackObjectThin 
PS1DR2 
Error in Kron (1980) magnitude from z filter stack detection. 
real 
4 
AB magnitudes 
999 

zKronRad 
StackObjectAttributes 
PS1DR2 
Kron (1980) radius from z filter stack detection. 
real 
4 
arcsec 
999 

zMagMAD 
calVariability 
WSACalib 
Median Absolute Deviation of Z magnitude 
real 
4 
mag 
0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zMagRms 
calVariability 
WSACalib 
rms of Z magnitude 
real 
4 
mag 
0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zmaxCadence 
calVariability 
WSACalib 
maximum gap between observations 
real 
4 
days 
0.9999995e9 

The observations are classified as good, flagged or missing. Flagged observations are ones where the object has a ppErrBit flag. Missing observations are observations of the part of the sky that include the position of the object, but had no detection. All the statistics are calculated from good observations. The cadence parameters give the minimum, median and maximum time between observations, which is useful to know if the data could be used to find a particular type of variable. 
zMaxMag 
calVariability 
WSACalib 
Maximum magnitude in Z band, of good detections 
real 
4 

0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zMeanApMag 
MeanObject 
PS1DR2 
Mean aperture magnitude from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanApMagErr 
MeanObject 
PS1DR2 
Error in mean aperture magnitude from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanApMagNpt 
MeanObject 
PS1DR2 
Number of measurements included in mean aperture magnitude from z filter detections. 
smallint 
2 

999 

zMeanApMagStd 
MeanObject 
PS1DR2 
Standard deviation of aperture magnitudes from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanKronMag 
MeanObject 
PS1DR2 
Mean Kron (1980) magnitude from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanKronMagErr 
MeanObject 
PS1DR2 
Error in mean Kron (1980) magnitude from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanKronMagNpt 
MeanObject 
PS1DR2 
Number of measurements included in mean Kron (1980) magnitude from z filter detections. 
smallint 
2 

999 

zMeanKronMagStd 
MeanObject 
PS1DR2 
Standard deviation of Kron (1980) magnitudes from z filter detections. 
real 
4 
AB magnitudes 
999 

zmeanMag 
calVariability 
WSACalib 
Mean Z magnitude 
real 
4 
mag 
0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zMeanPSFMag 
MeanObject 
PS1DR2 
Mean PSF magnitude from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanPSFMagErr 
MeanObject 
PS1DR2 
Error in mean PSF magnitude from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanPSFMagMax 
MeanObject 
PS1DR2 
Maximum PSF magnitude from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanPSFMagMin 
MeanObject 
PS1DR2 
Minimum PSF magnitude from z filter detections. 
real 
4 
AB magnitudes 
999 

zMeanPSFMagNpt 
MeanObject 
PS1DR2 
Number of measurements included in mean PSF magnitude from z filter detections. 
smallint 
2 

999 

zMeanPSFMagStd 
MeanObject 
PS1DR2 
Standard deviation of PSF magnitudes from z filter detections. 
real 
4 
AB magnitudes 
999 

zmedCadence 
calVariability 
WSACalib 
median gap between observations 
real 
4 
days 
0.9999995e9 

The observations are classified as good, flagged or missing. Flagged observations are ones where the object has a ppErrBit flag. Missing observations are observations of the part of the sky that include the position of the object, but had no detection. All the statistics are calculated from good observations. The cadence parameters give the minimum, median and maximum time between observations, which is useful to know if the data could be used to find a particular type of variable. 
zmedianMag 
calVariability 
WSACalib 
Median Z magnitude 
real 
4 
mag 
0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zmfID 
calMergeLog, calSynopticMergeLog 
WSACalib 
the UID of the relevant Z multiframe 
bigint 
8 


ID_FRAME 
zmfID 
gcsMergeLog 
WSA 
the UID of the relevant Z multiframe 
bigint 
8 


ID_FRAME 
zmfID 
gcsZYJHKmergeLog 
WSA 
the UID of the relevant multiframe 
bigint 
8 


ID_FRAME 
zminCadence 
calVariability 
WSACalib 
minimum gap between observations 
real 
4 
days 
0.9999995e9 

The observations are classified as good, flagged or missing. Flagged observations are ones where the object has a ppErrBit flag. Missing observations are observations of the part of the sky that include the position of the object, but had no detection. All the statistics are calculated from good observations. The cadence parameters give the minimum, median and maximum time between observations, which is useful to know if the data could be used to find a particular type of variable. 
zMinMag 
calVariability 
WSACalib 
Minimum magnitude in Z band, of good detections 
real 
4 

0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zmomentR1 
StackObjectAttributes 
PS1DR2 
First radial moment for z filter stack detection. 
real 
4 
arcsec 
999 

zmomentRH 
StackObjectAttributes 
PS1DR2 
Half radial moment (r^0.5 weighting) for z filter stack detection. 
real 
4 
arcsec^0.5 
999 

zmomentXX 
StackObjectAttributes 
PS1DR2 
Second moment M_xx for z filter stack detection. 
real 
4 
arcsec^2 
999 

zmomentXY 
StackObjectAttributes 
PS1DR2 
Second moment M_xy for z filter stack detection. 
real 
4 
arcsec^2 
999 

zmomentYY 
StackObjectAttributes 
PS1DR2 
Second moment M_yy for z filter stack detection. 
real 
4 
arcsec^2 
999 

zmyExt 
calSource 
WSACalib 
Extended source colour ZY (using aperMag3) 
real 
4 
mag 
0.9999995e9 
PHOT_COLOR 
Default colours from pairs of adjacent passbands within a given set (e.g. YJ, JH and HK for YJHK) are recorded in the merged source table for ease of querying and speedy querying via indexing of these attributes. Presently, the pointsource colours and extended source colours are computed from the aperture corrected AperMag3 fixed 2 arcsec aperture diameter measures (for consistent measurement across all passbands) and generally good signaltonoise. At some point in the future, this may be changed such that pointsource colours will be computed from the PSFfitted measures and extended source colours computed from the 2d Sersic model profile fits. 
zmyExt 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Extended source colour ZY (using aperMag3) 
real 
4 
mag 
0.9999995e9 
PHOT_COLOR 
zmyExt 
gcsSource 
WSA 
Extended source colour ZY (using aperMag3) 
real 
4 
mag 
0.9999995e9 
PHOT_COLOR 
Default colours from pairs of adjacent passbands within a given set (e.g. YJ, JH and HK for YJHK) are recorded in the merged source table for ease of querying and speedy querying via indexing of these attributes. Presently, the pointsource colours and extended source colours are computed from the aperture corrected AperMag3 fixed 2 arcsec aperture diameter measures (for consistent measurement across all passbands) and generally good signaltonoise. At some point in the future, this may be changed such that pointsource colours will be computed from the PSFfitted measures and extended source colours computed from the 2d Sersic model profile fits. 
zmyExtErr 
calSource 
WSACalib 
Error on extended source colour ZY 
real 
4 
mag 
0.9999995e9 
ERROR 
Default colours from pairs of adjacent passbands within a given set (e.g. YJ, JH and HK for YJHK) are recorded in the merged source table for ease of querying and speedy querying via indexing of these attributes. Presently, the pointsource colours and extended source colours are computed from the aperture corrected AperMag3 fixed 2 arcsec aperture diameter measures (for consistent measurement across all passbands) and generally good signaltonoise. At some point in the future, this may be changed such that pointsource colours will be computed from the PSFfitted measures and extended source colours computed from the 2d Sersic model profile fits. 
zmyExtErr 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error on extended source colour ZY 
real 
4 
mag 
0.9999995e9 
ERROR 
zmyExtErr 
gcsSource 
WSA 
Error on extended source colour ZY 
real 
4 
mag 
0.9999995e9 
ERROR 
Default colours from pairs of adjacent passbands within a given set (e.g. YJ, JH and HK for YJHK) are recorded in the merged source table for ease of querying and speedy querying via indexing of these attributes. Presently, the pointsource colours and extended source colours are computed from the aperture corrected AperMag3 fixed 2 arcsec aperture diameter measures (for consistent measurement across all passbands) and generally good signaltonoise. At some point in the future, this may be changed such that pointsource colours will be computed from the PSFfitted measures and extended source colours computed from the 2d Sersic model profile fits. 
zmyPnt 
calSource, calSynopticSource 
WSACalib 
Point source colour ZY (using aperMag3) 
real 
4 
mag 
0.9999995e9 
PHOT_COLOR 
Default colours from pairs of adjacent passbands within a given set (e.g. YJ, JH and HK for YJHK) are recorded in the merged source table for ease of querying and speedy querying via indexing of these attributes. Presently, the pointsource colours and extended source colours are computed from the aperture corrected AperMag3 fixed 2 arcsec aperture diameter measures (for consistent measurement across all passbands) and generally good signaltonoise. At some point in the future, this may be changed such that pointsource colours will be computed from the PSFfitted measures and extended source colours computed from the 2d Sersic model profile fits. 
zmyPnt 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Point source colour ZY (using aperMag3) 
real 
4 
mag 
0.9999995e9 
PHOT_COLOR 
zmyPnt 
gcsSource 
WSA 
Point source colour ZY (using aperMag3) 
real 
4 
mag 
0.9999995e9 
PHOT_COLOR 
Default colours from pairs of adjacent passbands within a given set (e.g. YJ, JH and HK for YJHK) are recorded in the merged source table for ease of querying and speedy querying via indexing of these attributes. Presently, the pointsource colours and extended source colours are computed from the aperture corrected AperMag3 fixed 2 arcsec aperture diameter measures (for consistent measurement across all passbands) and generally good signaltonoise. At some point in the future, this may be changed such that pointsource colours will be computed from the PSFfitted measures and extended source colours computed from the 2d Sersic model profile fits. 
zmyPntErr 
calSource, calSynopticSource 
WSACalib 
Error on point source colour ZY 
real 
4 
mag 
0.9999995e9 
ERROR 
Default colours from pairs of adjacent passbands within a given set (e.g. YJ, JH and HK for YJHK) are recorded in the merged source table for ease of querying and speedy querying via indexing of these attributes. Presently, the pointsource colours and extended source colours are computed from the aperture corrected AperMag3 fixed 2 arcsec aperture diameter measures (for consistent measurement across all passbands) and generally good signaltonoise. At some point in the future, this may be changed such that pointsource colours will be computed from the PSFfitted measures and extended source colours computed from the 2d Sersic model profile fits. 
zmyPntErr 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error on point source colour ZY 
real 
4 
mag 
0.9999995e9 
ERROR 
zmyPntErr 
gcsSource 
WSA 
Error on point source colour ZY 
real 
4 
mag 
0.9999995e9 
ERROR 
Default colours from pairs of adjacent passbands within a given set (e.g. YJ, JH and HK for YJHK) are recorded in the merged source table for ease of querying and speedy querying via indexing of these attributes. Presently, the pointsource colours and extended source colours are computed from the aperture corrected AperMag3 fixed 2 arcsec aperture diameter measures (for consistent measurement across all passbands) and generally good signaltonoise. At some point in the future, this may be changed such that pointsource colours will be computed from the PSFfitted measures and extended source colours computed from the 2d Sersic model profile fits. 
zndof 
calVariability 
WSACalib 
Number of degrees of freedom for chisquare 
smallint 
2 

9999 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
znDofAst 
calVarFrameSetInfo 
WSACalib 
Number of degrees of freedom of astrometric fit in Z band. 
smallint 
2 

9999 

The best fit solution to the expected RMS position around the mean for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. 
znDofPht 
calVarFrameSetInfo 
WSACalib 
Number of degrees of freedom of photometric fit in Z band. 
smallint 
2 

9999 

The best fit solution to the expected RMS brightness (in magnitudes) for all objects in the frameset. Objects were binned in ranges of magnitude and the median RMS (after clipping out variable objects using the medianabsolute deviation) was calculated. The Strateva function $\zeta(m)>=a+b\,10^{0.4m}+c\,10^{0.8m}$ was fit, where $\zeta(m)$ is the expected RMS as a function of magnitude. The chisquared and number of degrees of freedom are also calculated. This technique was used in Sesar et al. 2007, AJ, 134, 2236. 
znFlaggedObs 
calVariability 
WSACalib 
Number of detections in Z band flagged as potentially spurious by calDetection.ppErrBits 
int 
4 

0 

The observations are classified as good, flagged or missing. Flagged observations are ones where the object has a ppErrBit flag. Missing observations are observations of the part of the sky that include the position of the object, but had no detection. All the statistics are calculated from good observations. The cadence parameters give the minimum, median and maximum time between observations, which is useful to know if the data could be used to find a particular type of variable. 
znFrames 
StackObjectThin 
PS1DR2 
Number of input frames/exposures contributing to the z filter stack detection. 
int 
4 

999 

znGoodObs 
calVariability 
WSACalib 
Number of good detections in Z band 
int 
4 

0 

The observations are classified as good, flagged or missing. Flagged observations are ones where the object has a ppErrBit flag. Missing observations are observations of the part of the sky that include the position of the object, but had no detection. All the statistics are calculated from good observations. The cadence parameters give the minimum, median and maximum time between observations, which is useful to know if the data could be used to find a particular type of variable. 
zNgt3sig 
calVariability 
WSACalib 
Number of good detections in Zband that are more than 3 sigma deviations 
smallint 
2 

9999 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
znMissingObs 
calVariability 
WSACalib 
Number of Z band frames that this object should have been detected on and was not 
int 
4 

0 

The observations are classified as good, flagged or missing. Flagged observations are ones where the object has a ppErrBit flag. Missing observations are observations of the part of the sky that include the position of the object, but had no detection. All the statistics are calculated from good observations. The cadence parameters give the minimum, median and maximum time between observations, which is useful to know if the data could be used to find a particular type of variable. 
zone 
ExternalSurveyTable 
WSA 
default (0) or special (n) zone 
smallint 
2 


obs.field 
zone 
ExternalSurveyTable 
WSACalib 
default (0) or special (n) zone 
smallint 
2 


obs.field 
zone 
ExternalSurveyTable 
WSATransit 
default (0) or special (n) zone 
smallint 
2 


obs.field 
zone 
ExternalSurveyTable 
WSAUHS 
default (0) or special (n) zone 
smallint 
2 


obs.field 
zoneID 
ObjectThin 
PS1DR2 
Local zone index, found by dividing the sky into bands of declination 1/2 arcminute in height: zoneID = floor((90 + declination)/0.0083333). 
int 
4 


meta.id 
zp 
Detection 
PS1DR2 
Photometric zeropoint. Necessary for converting listed fluxes and magnitudes back to measured ADU counts. 
real 
4 
magnitudes 
0 

zPA 
calSource, calSynopticSource 
WSACalib 
ellipse fit celestial orientation in Z 
real 
4 
Degrees 
0.9999995e9 
POS_POSANG 
zPA 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
ellipse fit celestial orientation in Z 
real 
4 
Degrees 
0.9999995e9 
POS_POSANG 
zPetroMag 
calSource 
WSACalib 
Extended source Z mag (Petrosian) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zPetroMag 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Extended source Z mag (Petrosian) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zPetroMagErr 
calSource 
WSACalib 
Error in extended source Z mag (Petrosian) 
real 
4 
mag 
0.9999995e9 
ERROR 
zPetroMagErr 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error in extended source Z mag (Petrosian) 
real 
4 
mag 
0.9999995e9 
ERROR 
zPhoto 
twompzPhotoz 
TWOMPZ 
Photometric redshift obtained with the ANNz framework {image primary HDU keyword: zphoto} 
real 
4 

0.9999995e9 

zPhoto_ANN 
wiseScosPhotoz, wiseScosPhotozRejects, wiseScosSvm 
WISExSCOSPZ 
Photometric redshift obtained with the ANNz framework {image primary HDU keyword: zAnnz} 
real 
4 

0.9999995e9 

zPhoto_Corr 
wiseScosPhotoz, wiseScosPhotozRejects, wiseScosSvm 
WISExSCOSPZ 
Photometric redshift corrected at dec(1950)>2.5 for a hemispherical offset {image primary HDU keyword: zCorr} 
real 
4 

0.9999995e9 

zPlateScale 
StackObjectAttributes 
PS1DR2 
Local plate scale for the z filter stack. 
real 
4 
arcsec/pixel 
0 

zppErrBits 
calSource, calSynopticSource 
WSACalib 
additional WFAU postprocessing error bits in Z 
int 
4 

0 
CODE_MISC 
Postprocessing error quality bit flags assigned (NB: from UKIDSS DR2 release onwards) in the WSA curation procedure for survey data. From least to most significant byte in the 4byte integer attribute byte 0 (bits 0 to 7) corresponds to information on generally innocuous conditions that are nonetheless potentially significant as regards the integrity of that detection; byte 1 (bits 8 to 15) corresponds to warnings; byte 2 (bits 16 to 23) corresponds to important warnings; and finally byte 3 (bits 24 to 31) corresponds to severe warnings: Byte  Bit  Detection quality issue  Threshold or bit mask  Applies to     Decimal  Hexadecimal   0  4  Deblended  16  0x00000010  All VDFS catalogues  0  6  Bad pixel(s) in default aperture  64  0x00000040  All VDFS catalogues  1  15  Source in poor flat field region  32768  0x00008000  All but mosaics  2  16  Close to saturated  65536  0x00010000  All VDFS catalogues (though deeps excluded prior to DR8)  2  17  Photometric calibration probably subject to systematic error  131072  0x00020000  GPS only  2  19  Possible crosstalk artefact/contamination  524288  0x00080000  All but GPS  2  22  Lies within a dither offset of the stacked frame boundary  4194304  0x00400000  All but mosaics  In this way, the higher the error quality bit flag value, the more likely it is that the detection is spurious. The decimal threshold (column 4) gives the minimum value of the quality flag for a detection having the given condition (since other bits in the flag may be set also; the corresponding hexadecimal value, where each digit corresponds to 4 bits in the flag, can be easier to compute when writing SQL queries to test for a given condition). For example, to exclude all K band sources in the LAS having any error quality condition other than informational ones, include a predicate ... AND kppErrBits ≤ 255. See the SQL Cookbook and other online pages for further information. 
zppErrBits 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
additional WFAU postprocessing error bits in Z 
int 
4 

0 
CODE_MISC 
zppErrBits 
gcsSource 
WSA 
additional WFAU postprocessing error bits in Z 
int 
4 

0 
CODE_MISC 
Postprocessing error quality bit flags assigned (NB: from UKIDSS DR2 release onwards) in the WSA curation procedure for survey data. From least to most significant byte in the 4byte integer attribute byte 0 (bits 0 to 7) corresponds to information on generally innocuous conditions that are nonetheless potentially significant as regards the integrity of that detection; byte 1 (bits 8 to 15) corresponds to warnings; byte 2 (bits 16 to 23) corresponds to important warnings; and finally byte 3 (bits 24 to 31) corresponds to severe warnings: Byte  Bit  Detection quality issue  Threshold or bit mask  Applies to     Decimal  Hexadecimal   0  4  Deblended  16  0x00000010  All VDFS catalogues  0  6  Bad pixel(s) in default aperture  64  0x00000040  All VDFS catalogues  1  15  Source in poor flat field region  32768  0x00008000  All but mosaics  2  16  Close to saturated  65536  0x00010000  All VDFS catalogues (though deeps excluded prior to DR8)  2  17  Photometric calibration probably subject to systematic error  131072  0x00020000  GPS only  2  19  Possible crosstalk artefact/contamination  524288  0x00080000  All but GPS  2  22  Lies within a dither offset of the stacked frame boundary  4194304  0x00400000  All but mosaics  In this way, the higher the error quality bit flag value, the more likely it is that the detection is spurious. The decimal threshold (column 4) gives the minimum value of the quality flag for a detection having the given condition (since other bits in the flag may be set also; the corresponding hexadecimal value, where each digit corresponds to 4 bits in the flag, can be easier to compute when writing SQL queries to test for a given condition). For example, to exclude all K band sources in the LAS having any error quality condition other than informational ones, include a predicate ... AND kppErrBits ≤ 255. See the SQL Cookbook and other online pages for further information. 
zprobVar 
calVariability 
WSACalib 
Probability of variable from chisquare (and other data) 
real 
4 

0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zpsfChiSq 
StackObjectAttributes 
PS1DR2 
Reduced chi squared value of the PSF model fit for z filter stack detection. 
real 
4 

999 

zpsfCore 
StackObjectAttributes 
PS1DR2 
PSF core parameter k from z filter stack detection, where F = F0 / (1 + k r^2 + r^3.33). 
real 
4 

999 

zPSFFlux 
StackObjectAttributes 
PS1DR2 
PSF flux from z filter stack detection. 
real 
4 
Janskys 
999 

zPSFFluxErr 
StackObjectAttributes 
PS1DR2 
Error in PSF flux from z filter stack detection. 
real 
4 
Janskys 
999 

zpsfLikelihood 
StackObjectAttributes 
PS1DR2 
Likelihood that this z filter stack detection is best fit by a PSF. 
real 
4 

999 

zPSFMag 
StackObjectThin 
PS1DR2 
PSF magnitude from z filter stack detection. 
real 
4 
AB magnitudes 
999 

zPsfMag 
calSource 
WSACalib 
Point source profilefitted Z mag 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zPsfMag 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Point source profilefitted Z mag 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zPSFMagErr 
StackObjectThin 
PS1DR2 
Error in PSF magnitude from z filter stack detection. 
real 
4 
AB magnitudes 
999 

zPsfMagErr 
calSource 
WSACalib 
Error in point source profilefitted Z mag 
real 
4 
mag 
0.9999995e9 
ERROR 
zPsfMagErr 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error in point source profilefitted Z mag 
real 
4 
mag 
0.9999995e9 
ERROR 
zpsfMajorFWHM 
StackObjectAttributes 
PS1DR2 
PSF major axis FWHM from z filter stack detection. 
real 
4 
arcsec 
999 

zpsfMinorFWHM 
StackObjectAttributes 
PS1DR2 
PSF minor axis FWHM from z filter stack detection. 
real 
4 
arcsec 
999 

zpsfQf 
StackObjectAttributes 
PS1DR2 
PSF coverage factor for z filter stack detection. 
real 
4 

999 

zpsfQfPerfect 
StackObjectAttributes 
PS1DR2 
PSFweighted fraction of pixels totally unmasked for z filter stack detection. 
real 
4 

999 

zpsfTheta 
StackObjectAttributes 
PS1DR2 
PSF major axis orientation from z filter stack detection. 
real 
4 
degrees 
999 

zpSystem 
ExternalProduct 
WSA 
System of zeropoint (Vega/AB) 
varchar 
16 

'NONE' 

zpSystem 
ExternalProduct 
WSAUHS 
System of zeropoint (Vega/AB) 
varchar 
16 

'NONE' 

zpSystem 
RequiredMosaicTopLevel 
WSAUHS 
System of zeropoint (Vega/AB) 
varchar 
8 

'NONE' 

zQfPerfect 
MeanObject 
PS1DR2 
Maximum PSF weighted fraction of pixels totally unmasked from z filter detections. 
real 
4 

999 

zra 
StackObjectThin 
PS1DR2 
Right ascension from z filter stack detection. 
float 
8 
degrees 
999 

zraErr 
StackObjectThin 
PS1DR2 
Right ascension error from z filter stack detection. 
real 
4 
arcsec 
999 

zSeqNum 
calSource, calSynopticSource 
WSACalib 
the running number of the Z detection 
int 
4 

99999999 
ID_NUMBER 
zSeqNum 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
the running number of the Z detection 
int 
4 

99999999 
ID_NUMBER 
zSerMag2D 
calSource 
WSACalib 
Extended source Z mag (profilefitted) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zSerMag2D 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Extended source Z mag (profilefitted) 
real 
4 
mag 
0.9999995e9 
PHOT_MAG 
zSerMag2DErr 
calSource 
WSACalib 
Error in extended source Z mag (profilefitted) 
real 
4 
mag 
0.9999995e9 
ERROR 
zSerMag2DErr 
gcsPointSource, gcsSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Error in extended source Z mag (profilefitted) 
real 
4 
mag 
0.9999995e9 
ERROR 
zskewness 
calVariability 
WSACalib 
Skewness in Z band (see Sesar et al. 2007) 
real 
4 

0.9999995e9 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zsky 
StackObjectAttributes 
PS1DR2 
Residual background sky level at the z filter stack detection. 
real 
4 
Janskys/arcsec^2 
999 

zskyErr 
StackObjectAttributes 
PS1DR2 
Error in residual background sky level at the z filter stack detection. 
real 
4 
Janskys/arcsec^2 
999 

ZSOURCE 
mgcBrightSpec 
MGC 
Identifier for best redshift and quality 
varchar 
10 



zSpec 
twompzPhotoz 
TWOMPZ 
Spectroscopic redshift {image primary HDU keyword: zspec} 
real 
4 

0.9999995e9 

zstackDetectID 
StackObjectAttributes, StackObjectThin 
PS1DR2 
Unique stack detection identifier. 
bigint 
8 



zstackImageID 
StackObjectAttributes, StackObjectThin 
PS1DR2 
Unique stack identifier for z filter detection. 
bigint 
8 



ztotalPeriod 
calVariability 
WSACalib 
total period of observations (last obsfirst obs) 
real 
4 
days 
0.9999995e9 

The observations are classified as good, flagged or missing. Flagged observations are ones where the object has a ppErrBit flag. Missing observations are observations of the part of the sky that include the position of the object, but had no detection. All the statistics are calculated from good observations. The cadence parameters give the minimum, median and maximum time between observations, which is useful to know if the data could be used to find a particular type of variable. 
zVarClass 
calVariability 
WSACalib 
Classification of variability in this band 
smallint 
2 

9999 

The photometry is calculated for good observations in the best aperture. The mean, rms, median, median absolute deviation, minMag and maxMag are quite standard. The skewness is calculated as in Sesar et al. 2007, AJ, 134, 2236. The number of good detections that are more than 3 standard deviations can indicate a distribution with many outliers. In each frameset, the mean and rms are used to derive a fit to the expected rms as a function of magnitude. The parameters for the fit are stored in VarFrameSetInfo and the value for the source is in expRms. This is subtracted from the rms in quadrature to get the intrinsic rms: the variability of the object beyond the noise in the system. The chisquared is calculated, assuming a nonvariable object which has the noise from the expectedrms and mean calculated as above. The probVar statistic assumes a chisquared distribution with the correct number of degrees of freedom. The varClass statistic is 1, if the probVar>0.9 and intrinsicRMS/expectedRMS>3. 
zXi 
calSource, calSynopticSource 
WSACalib 
Offset of Z detection from master position (+east/west) 
real 
4 
arcsec 
0.9999995e9 
POS_EQ_RA_OFF 
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 2.0 (UKIDSS LAS and GPS; UHS; also nonsurvey programmes) or 1.0 (UKIDSS GPS, DXS and UDS) arcseconds is used, the higher value enabling pairing of moving sources when epoch separations may be several years. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the LAS, you might wish to insist that the offsets in the selected sample are all below 1 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands. 
zXi 
gcsPointSource, gcsZYJHKsource, reliableGcsPointSource 
WSA 
Offset of Z detection from master position (+east/west) 
real 
4 
arcsec 
0.9999995e9 
POS_EQ_RA_OFF 
zXi 
gcsSource 
WSA 
Offset of Z detection from master position (+east/west) 
real 
4 
arcsec 
0.9999995e9 
POS_EQ_RA_OFF 
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 2.0 (UKIDSS LAS and GPS; UHS; also nonsurvey programmes) or 1.0 (UKIDSS GPS, DXS and UDS) arcseconds is used, the higher value enabling pairing of moving sources when epoch separations may be several years. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the LAS, you might wish to insist that the offsets in the selected sample are all below 1 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands. 
zxPos 
StackObjectAttributes 
PS1DR2 
PSF x center location from z filter stack detection. 
real 
4 
sky pixels 
999 

zxPosErr 
StackObjectAttributes 
PS1DR2 
Error in PSF x center location from z filter stack detection. 
real 
4 
sky pixels 
999 

zyiWS 
calVariability 
WSACalib 
WelchStetson statistic between Z and Y. This assumes colour does not vary much and helps remove variation due to a few poor detections 
real 
4 

0.9999995e9 

The WelchStetson statistic is a measure of the correlation of the variability between two bands. We use the calculation in Welch D.L. and Stetson P.B. 1993, AJ, 105, 5, which is also used in Sesar et al. 2007, AJ, 134, 2236. We use the aperMag3 magnitude when comparing between bands. 
zyPos 
StackObjectAttributes 
PS1DR2 
PSF y center location from z filter stack detection. 
real 
4 
sky pixels 
999 

zyPosErr 
StackObjectAttributes 
PS1DR2 
Error in PSF y center location from z filter stack detection. 
real 
4 
sky pixels 
999 

zzp 
StackObjectAttributes 
PS1DR2 
Photometric zeropoint for the z filter stack. Necessary for converting listed fluxes and magnitudes back to measured ADU counts. 
real 
4 
magnitudes 
0 
