P |
Name | Schema Table | Database | Description | Type | Length | Unit | Default Value | Unified Content Descriptor |
PA |
nvssSource |
NVSS |
[-90, 90] Position angle of fitted major axis |
real |
4 |
degress |
|
POS_POS-ANG |
pa |
UKIDSSDetection |
WSA |
ellipse fit orientation to x axis |
real |
4 |
degrees |
|
POS_POS-ANG |
pa |
calDetection, calListRemeasurement |
WSACalib |
ellipse fit orientation to x axis {catalogue TType keyword: Position_angle} Angle of ellipse major axis wrt x axis. |
real |
4 |
degrees |
|
POS_POS-ANG |
pa |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
ellipse fit orientation to x axis {catalogue TType keyword: Position_angle} Angle of ellipse major axis wrt x axis. |
real |
4 |
degrees |
|
POS_POS-ANG |
pa |
first08Jul16Source, firstSource |
FIRST |
position angle (east of north) derived from the elliptical Gaussian model for the source |
real |
4 |
degrees |
|
POS_POS-ANG |
pa |
ptsDetection |
WSATransit |
ellipse fit orientation to x axis {catalogue TType keyword: Position_angle} Angle of ellipse major axis wrt x axis. |
real |
4 |
degrees |
|
POS_POS-ANG |
pa |
udsDetection |
WSA |
ellipse fit orientation to x axis {catalogue TType keyword: Position_angle} Angle of ellipse major axis wrt x axis counterclockwise. |
real |
4 |
degrees |
|
POS_POS-ANG |
pairingCriterion |
Programme |
WSA |
The pairing criterion for associating detections into merged sources |
real |
4 |
Degrees |
|
?? |
pairingCriterion |
Programme |
WSACalib |
The pairing criterion for associating detections into merged sources |
real |
4 |
Degrees |
|
?? |
pairingCriterion |
Programme |
WSATransit |
The pairing criterion for associating detections into merged sources |
real |
4 |
Degrees |
|
?? |
parallax |
calVariability |
WSACalib |
Parallax of star |
real |
4 |
mas |
-0.9999995e9 |
|
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
parallax |
dxsVariability, udsVariability |
WSA |
Parallax of star |
real |
4 |
mas |
-0.9999995e9 |
|
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
pcSysID |
MultiframeDetector |
WSA |
PC system identifier {image extension keyword: PCSYSID} |
varchar |
32 |
|
NONE |
?? |
pcSysID |
MultiframeDetector |
WSACalib |
PC system identifier {image extension keyword: PCSYSID} |
varchar |
32 |
|
NONE |
?? |
pcSysID |
MultiframeDetector |
WSATransit |
PC system identifier {image extension keyword: PCSYSID} |
varchar |
32 |
|
NONE |
?? |
petroFlux |
UKIDSSDetection |
WSA |
flux within circular aperture to k × r_p ; k = 2 |
real |
4 |
ADU |
|
PHOT_INTENSITY_ADU |
petroFlux |
calDetection, calListRemeasurement |
WSACalib |
flux within circular aperture to k × r_p ; k = 2 {catalogue TType keyword: Petr_flux} |
real |
4 |
ADU |
|
PHOT_INTENSITY_ADU |
petroFlux |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
flux within circular aperture to k × r_p ; k = 2 {catalogue TType keyword: Petr_flux} |
real |
4 |
ADU |
|
PHOT_INTENSITY_ADU |
petroFlux |
ptsDetection |
WSATransit |
flux within circular aperture to k × r_p ; k = 2 {catalogue TType keyword: Petr_flux} |
real |
4 |
ADU |
|
PHOT_INTENSITY_ADU |
petroFlux |
udsDetection |
WSA |
flux within Petrosian radius circular aperture (SE: FLUX_PETRO) {catalogue TType keyword: Petr_flux} |
real |
4 |
ADU |
|
PHOT_INTENSITY_ADU |
petroFluxErr |
UKIDSSDetection |
WSA |
error on Petrosian flux |
real |
4 |
ADU |
|
ERROR |
petroFluxErr |
calDetection, calListRemeasurement |
WSACalib |
error on Petrosian flux {catalogue TType keyword: Petr_flux_err} |
real |
4 |
ADU |
|
ERROR |
petroFluxErr |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
error on Petrosian flux {catalogue TType keyword: Petr_flux_err} |
real |
4 |
ADU |
|
ERROR |
petroFluxErr |
ptsDetection |
WSATransit |
error on Petrosian flux {catalogue TType keyword: Petr_flux_err} |
real |
4 |
ADU |
|
ERROR |
petroFluxErr |
udsDetection |
WSA |
error on Petrosian flux (SE: FLUXERR_PETRO) {catalogue TType keyword: Petr_flux_err} |
real |
4 |
ADU |
|
ERROR |
petroMag |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, UKIDSSDetection, udsDetection, udsListRemeasurement |
WSA |
Calibrated Petrosian magnitude within circular aperture r_p |
real |
4 |
mag |
|
PHOT_INT-MAG |
petroMag |
calDetection, calListRemeasurement |
WSACalib |
Calibrated Petrosian magnitude within circular aperture r_p |
real |
4 |
mag |
|
PHOT_INT-MAG |
petroMag |
ptsDetection |
WSATransit |
Calibrated Petrosian magnitude within circular aperture r_p |
real |
4 |
mag |
|
PHOT_INT-MAG |
petroMagErr |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, UKIDSSDetection, udsDetection, udsListRemeasurement |
WSA |
error on calibrated Petrosian magnitude |
real |
4 |
mag |
|
ERROR |
petroMagErr |
calDetection, calListRemeasurement |
WSACalib |
error on calibrated Petrosian magnitude |
real |
4 |
mag |
|
ERROR |
petroMagErr |
ptsDetection |
WSATransit |
error on calibrated Petrosian magnitude |
real |
4 |
mag |
|
ERROR |
petroRad |
UKIDSSDetection |
WSA |
r_p as defined in Yasuda et al. 2001 AJ 112 1104 |
real |
4 |
pixels |
|
EXTENSION_RAD |
petroRad |
calDetection, calListRemeasurement |
WSACalib |
r_p as defined in Yasuda et al. 2001 AJ 112 1104 {catalogue TType keyword: Petr_radius} |
real |
4 |
pixels |
|
EXTENSION_RAD |
petroRad |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
r_p as defined in Yasuda et al. 2001 AJ 112 1104 {catalogue TType keyword: Petr_radius} |
real |
4 |
pixels |
|
EXTENSION_RAD |
petroRad |
ptsDetection |
WSATransit |
r_p as defined in Yasuda et al. 2001 AJ 112 1104 {catalogue TType keyword: Petr_radius} |
real |
4 |
pixels |
|
EXTENSION_RAD |
petroRad |
udsDetection |
WSA |
Petrosian radius (SE: PETRO_RADIUS*A_IMAGE) {catalogue TType keyword: Petr_radius} |
real |
4 |
pixels |
|
EXTENSION_RAD |
Since <FLUX>_RADIUS is expressed in multiples of the major axis, <FLUX>_RADIUS is multiplied by A_IMAGE to convert to pixels. |
PF_DEC |
mgcBrightSpec |
MGC |
PFr object declination in deg (J2000) |
float |
8 |
|
|
|
PF_JMK |
mgcBrightSpec |
MGC |
PFr J-K colour from 2MASS |
real |
4 |
|
|
|
PF_K |
mgcBrightSpec |
MGC |
PFr K magnitude from 2MASS |
real |
4 |
|
|
|
PF_NAME |
mgcBrightSpec |
MGC |
PFr object name |
varchar |
8 |
|
|
|
PF_R |
mgcBrightSpec |
MGC |
PFr R magnitude from USNO |
real |
4 |
|
|
|
PF_RA |
mgcBrightSpec |
MGC |
PFr object right ascension in deg (J2000) |
float |
8 |
|
|
|
PF_Z |
mgcBrightSpec |
MGC |
PFr redshift |
real |
4 |
|
|
|
PF_ZQUAL |
mgcBrightSpec |
MGC |
PFr redshift quality |
tinyint |
1 |
|
|
|
pFlag |
rosat_bsc, rosat_fsc |
ROSAT |
possible problem with position determination |
varchar |
1 |
|
|
CODE_MISC |
pGalaxy |
calSource, calSynopticSource |
WSACalib |
Probability that the source is a galaxy |
real |
4 |
|
|
STAT_PROP |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
pGalaxy |
dxsJKsource, gcsPointSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, lasExtendedSource, lasPointSource, lasYJHKsource, reliableDxsSource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource, reliableUdsSource |
WSA |
Probability that the source is a galaxy |
real |
4 |
|
|
STAT_PROP |
pGalaxy |
dxsSource, gcsSource, gpsSource, lasSource, udsSource |
WSA |
Probability that the source is a galaxy |
real |
4 |
|
|
STAT_PROP |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
ph_qual |
twomass_psc |
2MASS |
Photometric quality flag. |
varchar |
3 |
|
|
CODE_QUALITY |
ph_qual |
twomass_sixx2_psc |
2MASS |
flag indicating photometric quality of source |
varchar |
3 |
|
|
|
phaRange |
rosat_bsc, rosat_fsc |
ROSAT |
PHA range with highest detection likelihood |
varchar |
1 |
|
|
CODE_MISC |
pHeight |
UKIDSSDetection |
WSA |
Highest pixel value above sky |
real |
4 |
ADU |
|
PHOT_COUNTS_MISC |
pHeight |
calDetection, calListRemeasurement |
WSACalib |
Highest pixel value above sky {catalogue TType keyword: Peak_height} In counts relative to local value of sky - also zeroth order aperture flux. |
real |
4 |
ADU |
|
PHOT_COUNTS_MISC |
pHeight |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
Highest pixel value above sky {catalogue TType keyword: Peak_height} In counts relative to local value of sky - also zeroth order aperture flux. |
real |
4 |
ADU |
|
PHOT_COUNTS_MISC |
pHeight |
ptsDetection |
WSATransit |
Highest pixel value above sky {catalogue TType keyword: Peak_height} In counts relative to local value of sky - also zeroth order aperture flux. |
real |
4 |
ADU |
|
PHOT_COUNTS_MISC |
pHeight |
udsDetection |
WSA |
Highest pixel value above sky (SE: FLUX_MAX) {catalogue TType keyword: Peak_height} In counts relative to local value of sky - also zeroth order aperture flux. |
real |
4 |
ADU |
|
PHOT_COUNTS_MISC |
pHeightErr |
UKIDSSDetection |
WSA |
Error in peak height |
real |
4 |
ADU |
|
ERROR |
pHeightErr |
calDetection, calListRemeasurement |
WSACalib |
Error in peak height {catalogue TType keyword: Peak_height_err} |
real |
4 |
ADU |
|
ERROR |
pHeightErr |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
Error in peak height {catalogue TType keyword: Peak_height_err} |
real |
4 |
ADU |
|
ERROR |
pHeightErr |
ptsDetection |
WSATransit |
Error in peak height {catalogue TType keyword: Peak_height_err} |
real |
4 |
ADU |
|
ERROR |
pHeightErr |
udsDetection |
WSA |
Error in peak height {catalogue TType keyword: Peak_height_err} FLUX_MAX*FLUXERR_APER1 / FLUX_APER1 |
real |
4 |
ADU |
|
ERROR |
phi_opt |
twomass_psc |
2MASS |
Position angle on the sky of the vector from the the associated optical source to the TWOMASS source position, in degrees East of North. |
smallint |
2 |
degrees |
|
POS_POS-ANG |
photZPCat |
MultiframeDetector |
WSA |
Photometric zero point for default extinction for the catalogue data {catalogue extension keyword: MAGZPT} |
real |
4 |
mags |
-0.9999995e9 |
?? |
Derived detector zero-point in the sense of what magnitude object gives a total (corrected) flux of 1 count/s. These ZPs are appropriate for generating magnitudes in the natural detector+filter system based on Vega, see CASU reports for more details on colour equations etc. The ZPs have been derived from a robust average of all photometric standards observed on any particular set of frames, corrected for airmass but assuming the default extinction values listed later. For other airmass or other values of the extinction use ZP → ZP - [sec(z)-1]×extinct + extinct default - extinct You can then make use of any of the assorted flux estimators to produce magnitudes via Mag = ZP - 2.5*log10(flux/exptime) - aperCor - skyCorr Note that for the so-called total and isophotal flux options it is not possible to have a single-valued aperture correction. |
photZPCat |
MultiframeDetector |
WSACalib |
Photometric zero point for default extinction for the catalogue data {catalogue extension keyword: MAGZPT} |
real |
4 |
mags |
-0.9999995e9 |
?? |
Derived detector zero-point in the sense of what magnitude object gives a total (corrected) flux of 1 count/s. These ZPs are appropriate for generating magnitudes in the natural detector+filter system based on Vega, see CASU reports for more details on colour equations etc. The ZPs have been derived from a robust average of all photometric standards observed on any particular set of frames, corrected for airmass but assuming the default extinction values listed later. For other airmass or other values of the extinction use ZP → ZP - [sec(z)-1]×extinct + extinct default - extinct You can then make use of any of the assorted flux estimators to produce magnitudes via Mag = ZP - 2.5*log10(flux/exptime) - aperCor - skyCorr Note that for the so-called total and isophotal flux options it is not possible to have a single-valued aperture correction. |
photZPCat |
MultiframeDetector |
WSATransit |
Photometric zero point for default extinction for the catalogue data {catalogue extension keyword: MAGZPT} |
real |
4 |
mags |
-0.9999995e9 |
?? |
Derived detector zero-point in the sense of what magnitude object gives a total (corrected) flux of 1 count/s. These ZPs are appropriate for generating magnitudes in the natural detector+filter system based on Vega, see CASU reports for more details on colour equations etc. The ZPs have been derived from a robust average of all photometric standards observed on any particular set of frames, corrected for airmass but assuming the default extinction values listed later. For other airmass or other values of the extinction use ZP → ZP - [sec(z)-1]×extinct + extinct default - extinct You can then make use of any of the assorted flux estimators to produce magnitudes via Mag = ZP - 2.5*log10(flux/exptime) - aperCor - skyCorr Note that for the so-called total and isophotal flux options it is not possible to have a single-valued aperture correction. |
photZPCat |
PreviousMFDZP |
WSA |
Photometric zeropoint for default extinction in catalogue header |
real |
4 |
mag |
-0.9999995e9 |
|
photZPCat |
PreviousMFDZP |
WSACalib |
Photometric zeropoint for default extinction in catalogue header |
real |
4 |
mag |
-0.9999995e9 |
|
photZPErrCat |
MultiframeDetector |
WSA |
Photometric zero point error for the catalogue data {catalogue extension keyword: MAGZRR} [Currently set to -1 for WFCAM data.] |
real |
4 |
mags |
-0.9999995e9 |
?? |
Error in the zero point. If good photometric night this error will be at the level of a few percent. Values of 0.05 and above indicate correspondingly non-photometric night and worse. |
photZPErrCat |
MultiframeDetector |
WSACalib |
Photometric zero point error for the catalogue data {catalogue extension keyword: MAGZRR} [Currently set to -1 for WFCAM data.] |
real |
4 |
mags |
-0.9999995e9 |
?? |
Error in the zero point. If good photometric night this error will be at the level of a few percent. Values of 0.05 and above indicate correspondingly non-photometric night and worse. |
photZPErrCat |
MultiframeDetector |
WSATransit |
Photometric zero point error for the catalogue data {catalogue extension keyword: MAGZRR} [Currently set to -1 for WFCAM data.] |
real |
4 |
mags |
-0.9999995e9 |
?? |
Error in the zero point. If good photometric night this error will be at the level of a few percent. Values of 0.05 and above indicate correspondingly non-photometric night and worse. |
photZPErrCat |
PreviousMFDZP |
WSA |
Photometric zeropoint error in catalogue header |
real |
4 |
mag |
-0.9999995e9 |
|
photZPErrCat |
PreviousMFDZP |
WSACalib |
Photometric zeropoint error in catalogue header |
real |
4 |
mag |
-0.9999995e9 |
|
pixelScale |
MultiframeDetector |
WSA |
Warning - Original detector pixel size, the actual angular pixel size is written to xPixSize and yPixSize in the CurrentAstrometry table {image extension keyword: PIXLSIZE} |
real |
4 |
arcsec per pixel |
-0.9999995e9 |
INST_PIXSIZE |
pixelScale |
MultiframeDetector |
WSACalib |
Warning - Original detector pixel size, the actual angular pixel size is written to xPixSize and yPixSize in the CurrentAstrometry table {image extension keyword: PIXLSIZE} |
real |
4 |
arcsec per pixel |
-0.9999995e9 |
INST_PIXSIZE |
pixelScale |
MultiframeDetector |
WSATransit |
Warning - Original detector pixel size, the actual angular pixel size is written to xPixSize and yPixSize in the CurrentAstrometry table {image extension keyword: PIXLSIZE} |
real |
4 |
arcsec per pixel |
-0.9999995e9 |
INST_PIXSIZE |
pixelSize |
RequiredMosaic |
WSA |
The final pixel size of the mosaic |
real |
4 |
arcsec |
-0.9999995e9 |
?? |
pixelSize |
RequiredMosaic |
WSACalib |
The final pixel size of the mosaic |
real |
4 |
arcsec |
-0.9999995e9 |
?? |
pixelSize |
RequiredMosaic |
WSATransit |
The final pixel size of the mosaic |
real |
4 |
arcsec |
-0.9999995e9 |
?? |
pmDec |
ukirtFSstars |
WSA |
Proper motion in Dec |
real |
4 |
arcsec per year |
0.0 |
|
pmDec |
ukirtFSstars |
WSACalib |
Proper motion in Dec |
real |
4 |
arcsec per year |
0.0 |
|
pmRA |
ukirtFSstars |
WSA |
Proper motion in RA |
real |
4 |
arcsec per year |
0.0 |
|
pmRA |
ukirtFSstars |
WSACalib |
Proper motion in RA |
real |
4 |
arcsec per year |
0.0 |
|
PN_1_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 1 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
PN_1_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 1 Maximum likelihood |
real |
4 |
|
|
|
PN_1_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 1 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
PN_1_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 1 flux |
real |
4 |
erg/cm**2/s |
|
|
PN_1_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 1 flux error |
real |
4 |
erg/cm**2/s |
|
|
PN_1_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 1 Count rates |
real |
4 |
counts/s |
|
|
PN_1_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 1 Count rates error |
real |
4 |
counts/s |
|
|
PN_1_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 1 vignetting value. |
real |
4 |
|
|
|
PN_2_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 2 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
PN_2_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 2 Maximum likelihood |
real |
4 |
|
|
|
PN_2_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 2 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
PN_2_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 2 flux |
real |
4 |
erg/cm**2/s |
|
|
PN_2_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 2 flux error |
real |
4 |
erg/cm**2/s |
|
|
PN_2_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 2 Count rates |
real |
4 |
counts/s |
|
|
PN_2_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 2 Count rates error |
real |
4 |
counts/s |
|
|
PN_2_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 2 vignetting value. |
real |
4 |
|
|
|
PN_3_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 3 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
PN_3_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 3 Maximum likelihood |
real |
4 |
|
|
|
PN_3_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 3 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
PN_3_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 3 flux |
real |
4 |
erg/cm**2/s |
|
|
PN_3_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 3 flux error |
real |
4 |
erg/cm**2/s |
|
|
PN_3_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 3 Count rates |
real |
4 |
counts/s |
|
|
PN_3_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 3 Count rates error |
real |
4 |
counts/s |
|
|
PN_3_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 3 vignetting value. |
real |
4 |
|
|
|
PN_4_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 4 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
PN_4_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 4 Maximum likelihood |
real |
4 |
|
|
|
PN_4_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 4 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
PN_4_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 4 flux |
real |
4 |
erg/cm**2/s |
|
|
PN_4_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 4 flux error |
real |
4 |
erg/cm**2/s |
|
|
PN_4_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 4 Count rates |
real |
4 |
counts/s |
|
|
PN_4_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 4 Count rates error |
real |
4 |
counts/s |
|
|
PN_4_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 4 vignetting value. |
real |
4 |
|
|
|
PN_5_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 5 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
PN_5_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 5 Maximum likelihood |
real |
4 |
|
|
|
PN_5_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 5 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
PN_5_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 5 flux |
real |
4 |
erg/cm**2/s |
|
|
PN_5_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 5 flux error |
real |
4 |
erg/cm**2/s |
|
|
PN_5_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 5 Count rates |
real |
4 |
counts/s |
|
|
PN_5_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 5 Count rates error |
real |
4 |
counts/s |
|
|
PN_5_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN band 5 vignetting value. |
real |
4 |
|
|
|
PN_8_CTS |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Combined band source counts |
real |
4 |
counts |
|
|
PN_8_CTS_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Combined band source counts 1 σ error |
real |
4 |
counts |
|
|
PN_8_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 8 Maximum likelihood |
real |
4 |
|
|
|
PN_8_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 8 flux |
real |
4 |
erg/cm**2/s |
|
|
PN_8_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 8 flux error |
real |
4 |
erg/cm**2/s |
|
|
PN_8_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 8 Count rates |
real |
4 |
counts/s |
|
|
PN_8_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 8 Count rates error |
real |
4 |
counts/s |
|
|
PN_9_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 9 Maximum likelihood |
real |
4 |
|
|
|
PN_9_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 9 flux |
real |
4 |
erg/cm**2/s |
|
|
PN_9_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 9 flux error |
real |
4 |
erg/cm**2/s |
|
|
PN_9_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 9 Count rates |
real |
4 |
counts/s |
|
|
PN_9_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN band 9 Count rates error |
real |
4 |
counts/s |
|
|
PN_CHI2PROB |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The Chi² probability (based on the null hypothesis) that the source as detected by the PN camera is constant. The Pearson approximation to Chi² for Poissonian data was used, in which the model is used as the estimator of its own variance . If more than one exposure (that is, time series) is available for this source the smallest value of probability was used. |
real |
4 |
|
|
|
PN_FILTER |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN filter. The options are Thick, Medium, Thin1, Thin2, and Open, depending on the efficiency of the optical blocking. |
varchar |
6 |
|
|
|
PN_FLAG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN flag string made of the flags 1 - 12 (counted from left to right) for the PN source detection. In case where the camera was not used in the source detection a dash is given. In case a source was not detected by the PN the flags are all set to False (default). Flag 10 is not used. |
varchar |
12 |
|
|
|
PN_HR1 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN hardness ratio between the bands 1 & 2 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
PN_HR1_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the PN hardness ratio between the bands 1 & 2 |
real |
4 |
|
|
|
PN_HR2 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN hardness ratio between the bands 2 & 3 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
PN_HR2_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the PN hardness ratio between the bands 2 & 3 |
real |
4 |
|
|
|
PN_HR3 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN hardness ratio between the bands 3 & 4 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
PN_HR3_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the PN hardness ratio between the bands 3 & 4 |
real |
4 |
|
|
|
PN_HR4 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN hardness ratio between the bands 4 & 5 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
PN_HR4_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the PN hardness ratio between the bands 4 & 5 |
real |
4 |
|
|
|
PN_MASKFRAC |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PSF weighted mean of the detector coverage of a detection as derived from the detection mask. Sources which have less than 0.15 of their PSF covered by the detector are considered as being not detected. |
real |
4 |
|
|
|
PN_OFFAX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN offaxis angle (the distance between the detection position and the onaxis position on the respective detector). The offaxis angle for a camera can be larger than 15 arcminutes when the detection is located outside the FOV of that camera. |
real |
4 |
arcmin |
|
|
PN_ONTIME |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PN ontime value (the total good exposure time (after GTI filtering) of the CCD where the detection is positioned). If a source position falls into CCD gaps or outside of the detector it will have a NULL given. |
real |
4 |
s |
|
|
PN_SUBMODE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN observing mode. The options are full frame mode with the full FOV exposed (in two sub-modes), and large window mode with only parts of the FOV exposed. |
varchar |
23 |
|
|
|
pNearH |
iras_psc |
IRAS |
Number of nearby hours-confirmed point sources |
tinyint |
1 |
|
|
NUMBER |
pNearW |
iras_psc |
IRAS |
Number of nearby weeks-confirmed point sources |
tinyint |
1 |
|
|
NUMBER |
pNoise |
calSource, calSynopticSource |
WSACalib |
Probability that the source is noise |
real |
4 |
|
|
STAT_PROP |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
pNoise |
dxsJKsource, gcsPointSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, lasExtendedSource, lasPointSource, lasYJHKsource, reliableDxsSource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource, reliableUdsSource |
WSA |
Probability that the source is noise |
real |
4 |
|
|
STAT_PROP |
pNoise |
dxsSource, gcsSource, gpsSource, lasSource, udsSource |
WSA |
Probability that the source is noise |
real |
4 |
|
|
STAT_PROP |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
pointingID |
Multiframe |
WSA |
Pointing ID within survey {image primary HDU keyword: SURVEY_I} |
varchar |
64 |
|
NONE |
?? |
pointingID |
Multiframe |
WSACalib |
Pointing ID within survey {image primary HDU keyword: SURVEY_I} |
varchar |
64 |
|
NONE |
?? |
pointingID |
Multiframe |
WSATransit |
Pointing ID within survey {image primary HDU keyword: SURVEY_I} |
varchar |
64 |
|
NONE |
?? |
polFlux |
nvssSource |
NVSS |
Integrated linearly polarized flux density |
real |
4 |
mJy |
|
PHOT_FLUX_LINEAR |
polPA |
nvssSource |
NVSS |
[-90,90] The position angle of polFlux |
real |
4 |
degress |
|
POS_POS-EQ |
pos |
iras_asc |
IRAS |
Position Angle from IRAS Source to Association (E of N) |
smallint |
2 |
degrees |
|
POS_POS-ANG |
posAng |
iras_psc |
IRAS |
Uncertainty ellipse position angle (East of North) |
smallint |
2 |
degrees |
|
POS_POS-ANG |
posAngle |
CurrentAstrometry |
WSACalib |
orientation of image x-axis to N-S |
float |
8 |
Degrees |
-0.9999995e9 |
POS_POS-ANG |
posAngle |
CurrentAstrometry |
WSATransit |
orientation of image x-axis to N-S |
float |
8 |
Degrees |
-0.9999995e9 |
POS_POS-ANG |
posAngle |
CurrentAstrometry, PreviousAstrometry |
WSA |
orientation of image x-axis to N-S |
float |
8 |
Degrees |
-0.9999995e9 |
POS_POS-ANG |
POSERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Total position uncertainty in arcseconds calculated by combining the statistical error RADEC_ERR and the systematic error SYSERR as follows: POSERR = SQRT ( RADEC_ERR² + SYSERR² ). |
real |
4 |
arcsec |
|
|
ppErrBits |
dxsListRemeasurement, gcsListRemeasurement, gpsListRemeasurement, lasListRemeasurement, UKIDSSDetection, udsListRemeasurement |
WSA |
additional WFAU post-processing error bits |
int |
4 |
|
0 |
CODE_MISC |
ppErrBits |
calDetection |
WSACalib |
additional WFAU post-processing error bits |
int |
4 |
|
0 |
CODE_MISC |
Post-processing error quality bit flags assigned (NB: from UKIDSS DR2 release onwards) in the WSA curation procedure for survey data. From least to most significant byte in the 4-byte integer attribute byte 0 (bits 0 to 7) corresponds to information on generally innocuous conditions that are nonetheless potentially significant as regards the integrity of that detection; byte 1 (bits 8 to 15) corresponds to warnings; byte 2 (bits 16 to 23) corresponds to important warnings; and finally byte 3 (bits 24 to 31) corresponds to severe warnings: Byte | Bit | Detection quality issue | Threshold or bit mask | Applies to | | | | Decimal | Hexadecimal | | 0 | 4 | Deblended | 16 | 0x00000010 | All VDFS catalogues | 0 | 6 | Bad pixel(s) in default aperture | 64 | 0x00000040 | All VDFS catalogues | 2 | 16 | Close to saturated | 65536 | 0x00010000 | All VDFS catalogues (though deeps excluded prior to DR8) | 2 | 17 | Photometric calibration probably subject to systematic error | 131072 | 0x00020000 | GPS only | 2 | 19 | Possible crosstalk artefact/contamination | 524288 | 0x00080000 | All but GPS | 2 | 22 | Lies within a dither offset of the stacked frame boundary | 4194304 | 0x00400000 | All but mosaics | In this way, the higher the error quality bit flag value, the more likely it is that the detection is spurious. The decimal threshold (column 4) gives the minimum value of the quality flag for a detection having the given condition (since other bits in the flag may be set also; the corresponding hexadecimal value, where each digit corresponds to 4 bits in the flag, can be easier to compute when writing SQL queries to test for a given condition). For example, to exclude all K band sources in the LAS having any error quality condition other than informational ones, include a predicate ... AND kppErrBits ≤ 255. See the SQL Cookbook and other online pages for further information. |
ppErrBits |
calListRemeasurement |
WSACalib |
additional WFAU post-processing error bits |
int |
4 |
|
0 |
CODE_MISC |
ppErrBits |
dxsDetection, gcsDetection, gpsDetection, lasDetection, udsDetection |
WSA |
additional WFAU post-processing error bits |
int |
4 |
|
0 |
CODE_MISC |
Post-processing error quality bit flags assigned (NB: from UKIDSS DR2 release onwards) in the WSA curation procedure for survey data. From least to most significant byte in the 4-byte integer attribute byte 0 (bits 0 to 7) corresponds to information on generally innocuous conditions that are nonetheless potentially significant as regards the integrity of that detection; byte 1 (bits 8 to 15) corresponds to warnings; byte 2 (bits 16 to 23) corresponds to important warnings; and finally byte 3 (bits 24 to 31) corresponds to severe warnings: Byte | Bit | Detection quality issue | Threshold or bit mask | Applies to | | | | Decimal | Hexadecimal | | 0 | 4 | Deblended | 16 | 0x00000010 | All VDFS catalogues | 0 | 6 | Bad pixel(s) in default aperture | 64 | 0x00000040 | All VDFS catalogues | 2 | 16 | Close to saturated | 65536 | 0x00010000 | All VDFS catalogues (though deeps excluded prior to DR8) | 2 | 17 | Photometric calibration probably subject to systematic error | 131072 | 0x00020000 | GPS only | 2 | 19 | Possible crosstalk artefact/contamination | 524288 | 0x00080000 | All but GPS | 2 | 22 | Lies within a dither offset of the stacked frame boundary | 4194304 | 0x00400000 | All but mosaics | In this way, the higher the error quality bit flag value, the more likely it is that the detection is spurious. The decimal threshold (column 4) gives the minimum value of the quality flag for a detection having the given condition (since other bits in the flag may be set also; the corresponding hexadecimal value, where each digit corresponds to 4 bits in the flag, can be easier to compute when writing SQL queries to test for a given condition). For example, to exclude all K band sources in the LAS having any error quality condition other than informational ones, include a predicate ... AND kppErrBits ≤ 255. See the SQL Cookbook and other online pages for further information. |
ppErrBits |
ptsDetection |
WSATransit |
additional WFAU post-processing error bits |
int |
4 |
|
0 |
CODE_MISC |
Post-processing error quality bit flags assigned (NB: from UKIDSS DR2 release onwards) in the WSA curation procedure for survey data. From least to most significant byte in the 4-byte integer attribute byte 0 (bits 0 to 7) corresponds to information on generally innocuous conditions that are nonetheless potentially significant as regards the integrity of that detection; byte 1 (bits 8 to 15) corresponds to warnings; byte 2 (bits 16 to 23) corresponds to important warnings; and finally byte 3 (bits 24 to 31) corresponds to severe warnings: Byte | Bit | Detection quality issue | Threshold or bit mask | Applies to | | | | Decimal | Hexadecimal | | 0 | 4 | Deblended | 16 | 0x00000010 | All VDFS catalogues | 0 | 6 | Bad pixel(s) in default aperture | 64 | 0x00000040 | All VDFS catalogues | 2 | 16 | Close to saturated | 65536 | 0x00010000 | All VDFS catalogues (though deeps excluded prior to DR8) | 2 | 17 | Photometric calibration probably subject to systematic error | 131072 | 0x00020000 | GPS only | 2 | 19 | Possible crosstalk artefact/contamination | 524288 | 0x00080000 | All but GPS | 2 | 22 | Lies within a dither offset of the stacked frame boundary | 4194304 | 0x00400000 | All but mosaics | In this way, the higher the error quality bit flag value, the more likely it is that the detection is spurious. The decimal threshold (column 4) gives the minimum value of the quality flag for a detection having the given condition (since other bits in the flag may be set also; the corresponding hexadecimal value, where each digit corresponds to 4 bits in the flag, can be easier to compute when writing SQL queries to test for a given condition). For example, to exclude all K band sources in the LAS having any error quality condition other than informational ones, include a predicate ... AND kppErrBits ≤ 255. See the SQL Cookbook and other online pages for further information. |
ppErrBitsStatus |
ProgrammeFrame |
WSA |
Bit flag to denote whether detection quality flagging has been done on this multiframe for this programme. |
int |
4 |
|
0 |
|
ppErrBitsStatus |
ProgrammeFrame |
WSACalib |
Bit flag to denote whether detection quality flagging has been done on this multiframe for this programme. |
int |
4 |
|
0 |
|
ppErrBitsStatus |
ProgrammeFrame |
WSATransit |
Bit flag to denote whether detection quality flagging has been done on this multiframe for this programme. |
int |
4 |
|
0 |
|
priFlgLb |
rosat_bsc, rosat_fsc |
ROSAT |
priority flag L-broad |
tinyint |
1 |
|
|
CODE_MISC |
priFlgLh |
rosat_bsc, rosat_fsc |
ROSAT |
priority flag L-hard |
tinyint |
1 |
|
|
CODE_MISC |
priFlgLs |
rosat_bsc, rosat_fsc |
ROSAT |
priority flag L-soft |
tinyint |
1 |
|
|
CODE_MISC |
priFlgMb |
rosat_bsc, rosat_fsc |
ROSAT |
priority flag M-broad |
tinyint |
1 |
|
|
CODE_MISC |
priFlgMh |
rosat_bsc, rosat_fsc |
ROSAT |
priority flag M-hard |
tinyint |
1 |
|
|
CODE_MISC |
priFlgMs |
rosat_bsc, rosat_fsc |
ROSAT |
priority flag M-soft |
tinyint |
1 |
|
|
CODE_MISC |
priOrSec |
calSource |
WSACalib |
Seam code for a unique (=0) or duplicated (!=0) source (eg. flags overlap duplicates). |
bigint |
8 |
|
-99999999 |
CODE_MISC |
Because of the spacing of the detectors in WFCAM, and the restrictions on guide star brightness, there will always be overlap regions between adjacent frame sets. Source merging is done on a set-by-set basis; hence after source merging there are usually a small number of duplicate sources in the table. A process known as seaming takes place after source merging is complete, whereby duplicates are identified and flagged. The flagging attribute is priOrSec, and the meaning of the flag is quite simple: if a source is not found to be duplicated in overlap regions, then priOrSec=0; if a source is duplicated, then priOrSec will be set to the frameSetID of the source that should be considered the best one to use out of the set of duplicates. Presently, the choice of which is best is made on the basis of proximity to the optical axis of the camera, the assumption being that this will give the best quality image in general. So, if a particular source has a non-zero priOrSec that is set to it's own value of frameSetID, then this indicates that there is a duplicate elsewhere in the table, but this is the one that should be selected as the best (i.e. this is the primary source). On the other hand, if a source has a non-zero value of priOrSec that is set a different frameSetID than that of the source in question, then this indicates that this source should be considered as a secondary duplicate of a source who's primary is actually to be found in the frame set pointed to by that value of frameSetID. Hence, the WHERE clause for selecting out a seamless, best catalogue is of the form WHERE ... AND (priOrSec=0 OR priOrSec=frameSetID). |
priOrSec |
calSourceRemeasurement |
WSACalib |
Seam code for a unique (=0) or duplicated (!=0) source (eg. flags overlap duplicates) |
bigint |
8 |
|
|
CODE_MISC |
Because of the spacing of the detectors in WFCAM, and the restrictions on guide star brightness, there will always be overlap regions between adjacent frame sets. Source merging is done on a set-by-set basis; hence after source merging there are usually a small number of duplicate sources in the table. A process known as seaming takes place after source merging is complete, whereby duplicates are identified and flagged. The flagging attribute is priOrSec, and the meaning of the flag is quite simple: if a source is not found to be duplicated in overlap regions, then priOrSec=0; if a source is duplicated, then priOrSec will be set to the frameSetID of the source that should be considered the best one to use out of the set of duplicates. Presently, the choice of which is best is made on the basis of proximity to the optical axis of the camera, the assumption being that this will give the best quality image in general. So, if a particular source has a non-zero priOrSec that is set to it's own value of frameSetID, then this indicates that there is a duplicate elsewhere in the table, but this is the one that should be selected as the best (i.e. this is the primary source). On the other hand, if a source has a non-zero value of priOrSec that is set a different frameSetID than that of the source in question, then this indicates that this source should be considered as a secondary duplicate of a source who's primary is actually to be found in the frame set pointed to by that value of frameSetID. Hence, the WHERE clause for selecting out a seamless, best catalogue is of the form WHERE ... AND (priOrSec=0 OR priOrSec=frameSetID). |
priOrSec |
dxsJKsource, gcsPointSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, lasExtendedSource, lasPointSource, lasYJHKsource, reliableDxsSource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource, reliableUdsSource |
WSA |
Seam code for a unique (=0) or duplicated (!=0) source (eg. flags overlap duplicates). |
bigint |
8 |
|
-99999999 |
CODE_MISC |
priOrSec |
dxsSource, gcsSource, gpsSource, lasSource, udsSource |
WSA |
Seam code for a unique (=0) or duplicated (!=0) source (eg. flags overlap duplicates). |
bigint |
8 |
|
-99999999 |
CODE_MISC |
Because of the spacing of the detectors in WFCAM, and the restrictions on guide star brightness, there will always be overlap regions between adjacent frame sets. Source merging is done on a set-by-set basis; hence after source merging there are usually a small number of duplicate sources in the table. A process known as seaming takes place after source merging is complete, whereby duplicates are identified and flagged. The flagging attribute is priOrSec, and the meaning of the flag is quite simple: if a source is not found to be duplicated in overlap regions, then priOrSec=0; if a source is duplicated, then priOrSec will be set to the frameSetID of the source that should be considered the best one to use out of the set of duplicates. Presently, the choice of which is best is made on the basis of proximity to the optical axis of the camera, the assumption being that this will give the best quality image in general. So, if a particular source has a non-zero priOrSec that is set to it's own value of frameSetID, then this indicates that there is a duplicate elsewhere in the table, but this is the one that should be selected as the best (i.e. this is the primary source). On the other hand, if a source has a non-zero value of priOrSec that is set a different frameSetID than that of the source in question, then this indicates that this source should be considered as a secondary duplicate of a source who's primary is actually to be found in the frame set pointed to by that value of frameSetID. Hence, the WHERE clause for selecting out a seamless, best catalogue is of the form WHERE ... AND (priOrSec=0 OR priOrSec=frameSetID). |
priOrSec |
dxsSourceRemeasurement, gcsSourceRemeasurement, gpsSourceRemeasurement, lasSourceRemeasurement, udsSourceRemeasurement |
WSA |
Seam code for a unique (=0) or duplicated (!=0) source (eg. flags overlap duplicates) |
bigint |
8 |
|
|
CODE_MISC |
Because of the spacing of the detectors in WFCAM, and the restrictions on guide star brightness, there will always be overlap regions between adjacent frame sets. Source merging is done on a set-by-set basis; hence after source merging there are usually a small number of duplicate sources in the table. A process known as seaming takes place after source merging is complete, whereby duplicates are identified and flagged. The flagging attribute is priOrSec, and the meaning of the flag is quite simple: if a source is not found to be duplicated in overlap regions, then priOrSec=0; if a source is duplicated, then priOrSec will be set to the frameSetID of the source that should be considered the best one to use out of the set of duplicates. Presently, the choice of which is best is made on the basis of proximity to the optical axis of the camera, the assumption being that this will give the best quality image in general. So, if a particular source has a non-zero priOrSec that is set to it's own value of frameSetID, then this indicates that there is a duplicate elsewhere in the table, but this is the one that should be selected as the best (i.e. this is the primary source). On the other hand, if a source has a non-zero value of priOrSec that is set a different frameSetID than that of the source in question, then this indicates that this source should be considered as a secondary duplicate of a source who's primary is actually to be found in the frame set pointed to by that value of frameSetID. Hence, the WHERE clause for selecting out a seamless, best catalogue is of the form WHERE ... AND (priOrSec=0 OR priOrSec=frameSetID). |
productID |
ProgrammeFrame |
WSA |
Product ID of deep stack frame (or intermediate stack if used as a deep stack). {image primary HDU keyword: PRODID} |
bigint |
8 |
|
-99999999 |
|
productID |
ProgrammeFrame |
WSACalib |
Product ID of deep stack frame (or intermediate stack if used as a deep stack). {image primary HDU keyword: PRODID} |
bigint |
8 |
|
-99999999 |
|
productID |
ProgrammeFrame |
WSATransit |
Product ID of deep stack frame (or intermediate stack if used as a deep stack). {image primary HDU keyword: PRODID} |
bigint |
8 |
|
-99999999 |
|
productID |
RequiredDiffImage |
WSA |
A unique identifier assigned to each required difference image product entry |
int |
4 |
|
|
?? |
productID |
RequiredDiffImage |
WSACalib |
A unique identifier assigned to each required difference image product entry |
int |
4 |
|
|
?? |
productID |
RequiredDiffImage |
WSATransit |
A unique identifier assigned to each required difference image product entry |
int |
4 |
|
|
?? |
productID |
RequiredMosaic |
WSA |
A unique identifier assigned to each required mosaic product entry |
int |
4 |
|
|
?? |
productID |
RequiredMosaic |
WSACalib |
A unique identifier assigned to each required mosaic product entry |
int |
4 |
|
|
?? |
productID |
RequiredMosaic |
WSATransit |
A unique identifier assigned to each required mosaic product entry |
int |
4 |
|
|
?? |
productID |
RequiredStack |
WSA |
A unique identifier assigned to each required stack product entry |
int |
4 |
|
|
?? |
productID |
RequiredStack |
WSACalib |
A unique identifier assigned to each required stack product entry |
int |
4 |
|
|
?? |
productID |
RequiredStack |
WSATransit |
A unique identifier assigned to each required stack product entry |
int |
4 |
|
|
?? |
programmeID |
ProductLinks, ProgrammeCurationHistory, ProgrammeTable, RequiredDiffImage, RequiredFilters, RequiredListDrivenProduct, RequiredMosaic, RequiredNeighbours, RequiredStack |
WSA |
the unique programme ID |
int |
4 |
|
|
ID_SURVEY |
programmeID |
Programme |
WSA |
UID of the archived programme coded as above |
int |
4 |
|
|
ID_SURVEY |
programmeID |
Programme |
WSACalib |
UID of the archived programme coded as above |
int |
4 |
|
|
ID_SURVEY |
programmeID |
Programme |
WSATransit |
UID of the archived programme coded as above |
int |
4 |
|
|
ID_SURVEY |
programmeID |
ProgrammeFrame |
WSACalib |
WSA assigned programme UID {image primary HDU keyword: PROJECT} |
int |
4 |
|
-99999999 |
ID_SURVEY |
programmeID |
ProgrammeFrame |
WSATransit |
WSA assigned programme UID {image primary HDU keyword: PROJECT} |
int |
4 |
|
-99999999 |
ID_SURVEY |
programmeID |
ProgrammeFrame, SurveyProgrammes |
WSA |
WSA assigned programme UID {image primary HDU keyword: PROJECT} |
int |
4 |
|
-99999999 |
ID_SURVEY |
project |
Multiframe |
WSA |
Time-allocation code {image primary HDU keyword: PROJECT} |
varchar |
64 |
|
NONE |
REFER_CODE |
project |
Multiframe |
WSACalib |
Time-allocation code {image primary HDU keyword: PROJECT} |
varchar |
64 |
|
NONE |
REFER_CODE |
project |
Multiframe |
WSATransit |
Time-allocation code {image primary HDU keyword: PROJECT} |
varchar |
64 |
|
NONE |
REFER_CODE |
propPeriod |
Programme |
WSA |
the proprietory period for any data taken for this programme in months, e.g. 12 for open time. |
int |
4 |
months |
|
TIME_PERIOD |
propPeriod |
Programme |
WSACalib |
the proprietory period for any data taken for this programme in months, e.g. 12 for open time. |
int |
4 |
months |
|
TIME_PERIOD |
propPeriod |
Programme |
WSATransit |
the proprietory period for any data taken for this programme in months, e.g. 12 for open time. |
int |
4 |
months |
|
TIME_PERIOD |
proprietary |
Survey |
WSA |
Logical flag indicating whether a survey is proprietary or not (1=yes; 0=no) |
tinyint |
1 |
|
|
?? |
proprietary |
Survey |
WSACalib |
Logical flag indicating whether a survey is proprietary or not (1=yes; 0=no) |
tinyint |
1 |
|
|
?? |
proprietary |
Survey |
WSATransit |
Logical flag indicating whether a survey is proprietary or not (1=yes; 0=no) |
tinyint |
1 |
|
|
?? |
prox |
twomass_psc, twomass_xsc |
2MASS |
Proximity. |
real |
4 |
arcsec |
|
POS_ANG_DIST_GENERAL |
pSaturated |
calSource, calSynopticSource |
WSACalib |
Probability that the source is saturated |
real |
4 |
|
|
STAT_PROP |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
pSaturated |
dxsJKsource, gcsPointSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, lasExtendedSource, lasPointSource, lasYJHKsource, reliableDxsSource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource, reliableUdsSource |
WSA |
Probability that the source is saturated |
real |
4 |
|
|
STAT_PROP |
pSaturated |
dxsSource, gcsSource, gpsSource, lasSource, udsSource |
WSA |
Probability that the source is saturated |
real |
4 |
|
|
STAT_PROP |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
psfFitChi2 |
UKIDSSDetection |
WSA |
standard normalised variance of PSF fit |
real |
4 |
|
-0.9999995e9 |
FIT_STDEV |
psfFitChi2 |
calDetection, calListRemeasurement |
WSACalib |
standard normalised variance of PSF fit {catalogue TType keyword: PSF_fit_chi2} |
real |
4 |
|
-0.9999995e9 |
FIT_STDEV |
psfFitChi2 |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
standard normalised variance of PSF fit {catalogue TType keyword: PSF_fit_chi2} |
real |
4 |
|
-0.9999995e9 |
FIT_STDEV |
psfFitChi2 |
ptsDetection |
WSATransit |
standard normalised variance of PSF fit {catalogue TType keyword: PSF_fit_chi2} |
real |
4 |
|
-0.9999995e9 |
FIT_STDEV |
psfFitChi2 |
udsDetection |
WSA |
Not available in SE output {catalogue TType keyword: PSF_fit_chi2} |
real |
4 |
|
-0.9999995e9 |
|
psfFitDof |
UKIDSSDetection |
WSA |
no. of degrees of freedom of PSF fit |
smallint |
2 |
|
-9999 |
STAT_N-DOF |
psfFitDof |
calDetection, calListRemeasurement |
WSACalib |
no. of degrees of freedom of PSF fit {catalogue TType keyword: PSF_fit_dof} |
smallint |
2 |
|
-9999 |
STAT_N-DOF |
psfFitDof |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
no. of degrees of freedom of PSF fit {catalogue TType keyword: PSF_fit_dof} |
smallint |
2 |
|
-9999 |
STAT_N-DOF |
psfFitDof |
ptsDetection |
WSATransit |
no. of degrees of freedom of PSF fit {catalogue TType keyword: PSF_fit_dof} |
smallint |
2 |
|
-9999 |
STAT_N-DOF |
psfFitDof |
udsDetection |
WSA |
Not available in SE output {catalogue TType keyword: PSF_fit_dof} |
smallint |
2 |
|
-9999 |
|
psfFitX |
UKIDSSDetection |
WSA |
PSF-fitted X coordinate |
real |
4 |
pixels |
-0.9999995e9 |
POS_PLATE_X |
psfFitX |
calDetection, calListRemeasurement |
WSACalib |
PSF-fitted X coordinate {catalogue TType keyword: PSF_fit_X} |
real |
4 |
pixels |
-0.9999995e9 |
POS_PLATE_X |
psfFitX |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
PSF-fitted X coordinate {catalogue TType keyword: PSF_fit_X} |
real |
4 |
pixels |
-0.9999995e9 |
POS_PLATE_X |
psfFitX |
ptsDetection |
WSATransit |
PSF-fitted X coordinate {catalogue TType keyword: PSF_fit_X} |
real |
4 |
pixels |
-0.9999995e9 |
POS_PLATE_X |
psfFitX |
udsDetection |
WSA |
Not available in SE output {catalogue TType keyword: PSF_fit_X} |
real |
4 |
|
-0.9999995e9 |
|
psfFitXerr |
UKIDSSDetection |
WSA |
Error on PSF-fitted X coordinate |
real |
4 |
pixels |
-0.9999995e9 |
ERROR |
psfFitXerr |
calDetection, calListRemeasurement |
WSACalib |
Error on PSF-fitted X coordinate {catalogue TType keyword: PSF_fit_X_err} |
real |
4 |
pixels |
-0.9999995e9 |
ERROR |
psfFitXerr |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
Error on PSF-fitted X coordinate {catalogue TType keyword: PSF_fit_X_err} |
real |
4 |
pixels |
-0.9999995e9 |
ERROR |
psfFitXerr |
ptsDetection |
WSATransit |
Error on PSF-fitted X coordinate {catalogue TType keyword: PSF_fit_X_err} |
real |
4 |
pixels |
-0.9999995e9 |
ERROR |
psfFitXerr |
udsDetection |
WSA |
Not available in SE output {catalogue TType keyword: PSF_fit_X_err} |
real |
4 |
|
-0.9999995e9 |
|
psfFitY |
UKIDSSDetection |
WSA |
PSF-fitted Y coordinate |
real |
4 |
pixels |
-0.9999995e9 |
POS_PLATE_Y |
psfFitY |
calDetection, calListRemeasurement |
WSACalib |
PSF-fitted Y coordinate {catalogue TType keyword: PSF_fit_Y} |
real |
4 |
pixels |
-0.9999995e9 |
POS_PLATE_Y |
psfFitY |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
PSF-fitted Y coordinate {catalogue TType keyword: PSF_fit_Y} |
real |
4 |
pixels |
-0.9999995e9 |
POS_PLATE_Y |
psfFitY |
ptsDetection |
WSATransit |
PSF-fitted Y coordinate {catalogue TType keyword: PSF_fit_Y} |
real |
4 |
pixels |
-0.9999995e9 |
POS_PLATE_Y |
psfFitY |
udsDetection |
WSA |
Not available in SE output {catalogue TType keyword: PSF_fit_Y} |
real |
4 |
|
-0.9999995e9 |
|
psfFitYerr |
UKIDSSDetection |
WSA |
Error on PSF-fitted Y coordinate |
real |
4 |
pixels |
-0.9999995e9 |
ERROR |
psfFitYerr |
calDetection, calListRemeasurement |
WSACalib |
Error on PSF-fitted Y coordinate {catalogue TType keyword: PSF_fit_y_err} |
real |
4 |
pixels |
-0.9999995e9 |
ERROR |
psfFitYerr |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
Error on PSF-fitted Y coordinate {catalogue TType keyword: PSF_fit_y_err} |
real |
4 |
pixels |
-0.9999995e9 |
ERROR |
psfFitYerr |
ptsDetection |
WSATransit |
Error on PSF-fitted Y coordinate {catalogue TType keyword: PSF_fit_y_err} |
real |
4 |
pixels |
-0.9999995e9 |
ERROR |
psfFitYerr |
udsDetection |
WSA |
Not available in SE output {catalogue TType keyword: PSF_fit_y_err} |
real |
4 |
|
-0.9999995e9 |
|
psfFlux |
UKIDSSDetection |
WSA |
PSF-fitted flux |
real |
4 |
ADU |
-0.9999995e9 |
PHOT_INTENSITY_ADU |
psfFlux |
calDetection, calListRemeasurement |
WSACalib |
PSF-fitted flux {catalogue TType keyword: PSF_flux} |
real |
4 |
ADU |
-0.9999995e9 |
PHOT_INTENSITY_ADU |
psfFlux |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
PSF-fitted flux {catalogue TType keyword: PSF_flux} |
real |
4 |
ADU |
-0.9999995e9 |
PHOT_INTENSITY_ADU |
psfFlux |
ptsDetection |
WSATransit |
PSF-fitted flux {catalogue TType keyword: PSF_flux} |
real |
4 |
ADU |
-0.9999995e9 |
PHOT_INTENSITY_ADU |
psfFlux |
udsDetection |
WSA |
Not available in SE output {catalogue TType keyword: PSF_flux} |
real |
4 |
|
-0.9999995e9 |
|
psfFluxErr |
UKIDSSDetection |
WSA |
Error on PSF-fitted flux |
real |
4 |
ADU |
-0.9999995e9 |
ERROR |
psfFluxErr |
calDetection, calListRemeasurement |
WSACalib |
Error on PSF-fitted flux {catalogue TType keyword: PSF_flux_err} |
real |
4 |
ADU |
-0.9999995e9 |
ERROR |
psfFluxErr |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, udsListRemeasurement |
WSA |
Error on PSF-fitted flux {catalogue TType keyword: PSF_flux_err} |
real |
4 |
ADU |
-0.9999995e9 |
ERROR |
psfFluxErr |
ptsDetection |
WSATransit |
Error on PSF-fitted flux {catalogue TType keyword: PSF_flux_err} |
real |
4 |
ADU |
-0.9999995e9 |
ERROR |
psfFluxErr |
udsDetection |
WSA |
Not available in SE output {catalogue TType keyword: PSF_flux_err} |
real |
4 |
|
-0.9999995e9 |
|
psfMag |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, UKIDSSDetection, udsListRemeasurement |
WSA |
PSF-fitted calibrated magnitude |
real |
4 |
mag |
-0.9999995e9 |
PHOT_PROFILE |
psfMag |
calDetection, calListRemeasurement |
WSACalib |
PSF-fitted calibrated magnitude |
real |
4 |
mag |
-0.9999995e9 |
PHOT_PROFILE |
psfMag |
ptsDetection |
WSATransit |
PSF-fitted calibrated magnitude |
real |
4 |
mag |
-0.9999995e9 |
PHOT_PROFILE |
psfMag |
udsDetection |
WSA |
Not available in SE output |
real |
4 |
|
-0.9999995e9 |
|
psfMagErr |
dxsDetection, dxsListRemeasurement, gcsDetection, gcsListRemeasurement, gpsDetection, gpsListRemeasurement, lasDetection, lasListRemeasurement, UKIDSSDetection, udsListRemeasurement |
WSA |
Error on PSF-fitted calibrated magnitude |
real |
4 |
mag |
-0.9999995e9 |
ERROR |
psfMagErr |
calDetection, calListRemeasurement |
WSACalib |
Error on PSF-fitted calibrated magnitude |
real |
4 |
mag |
-0.9999995e9 |
ERROR |
psfMagErr |
ptsDetection |
WSATransit |
Error on PSF-fitted calibrated magnitude |
real |
4 |
mag |
-0.9999995e9 |
ERROR |
psfMagErr |
udsDetection |
WSA |
Not available in SE output |
real |
4 |
|
-0.9999995e9 |
|
pStar |
calSource, calSynopticSource |
WSACalib |
Probability that the source is a star |
real |
4 |
|
|
STAT_PROP |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
pStar |
dxsJKsource, gcsPointSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, lasExtendedSource, lasPointSource, lasYJHKsource, reliableDxsSource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource, reliableUdsSource |
WSA |
Probability that the source is a star |
real |
4 |
|
|
STAT_PROP |
pStar |
dxsSource, gcsSource, gpsSource, lasSource, udsSource |
WSA |
Probability that the source is a star |
real |
4 |
|
|
STAT_PROP |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
pts_key |
twomass_psc |
2MASS |
A unique identification number for the PSC source. |
int |
4 |
|
|
ID_NUMBER |
pts_key |
twomass_xsc |
2MASS |
key to point source data DB record. |
int |
4 |
|
|
ID_NUMBER |
pv21 |
CurrentAstrometry |
WSACalib |
Coefficient for r term (use only with ZPN projection) {image extension keyword: PV2_1} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pv21 |
CurrentAstrometry |
WSATransit |
Coefficient for r term (use only with ZPN projection) {image extension keyword: PV2_1} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pv21 |
CurrentAstrometry, PreviousAstrometry |
WSA |
Coefficient for r term (use only with ZPN projection) {image extension keyword: PV2_1} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pv22 |
CurrentAstrometry |
WSACalib |
Coefficient for r**2 term (use only with ZPN projection) {image extension keyword: PV2_2} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pv22 |
CurrentAstrometry |
WSATransit |
Coefficient for r**2 term (use only with ZPN projection) {image extension keyword: PV2_2} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pv22 |
CurrentAstrometry, PreviousAstrometry |
WSA |
Coefficient for r**2 term (use only with ZPN projection) {image extension keyword: PV2_2} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pv23 |
CurrentAstrometry |
WSACalib |
Coefficient for r**3 term (use only with ZPN projection) {image extension keyword: PV2_3} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pv23 |
CurrentAstrometry |
WSATransit |
Coefficient for r**3 term (use only with ZPN projection) {image extension keyword: PV2_3} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pv23 |
CurrentAstrometry, PreviousAstrometry |
WSA |
Coefficient for r**3 term (use only with ZPN projection) {image extension keyword: PV2_3} transformation from pixel to celestial co-ordinates |
float |
8 |
|
-0.9999995e9 |
POS_TRANSF_PARAM |
pxcntr |
twomass_psc |
2MASS |
The pts_key value of the nearest source in the PSC. |
int |
4 |
|
|
NUMBER |
pxcntr |
twomass_xsc |
2MASS |
ext_key value of nearest XSC source. |
int |
4 |
|
|
NUMBER |
pxpa |
twomass_psc, twomass_xsc |
2MASS |
The position angle on the sky of the vector from the source to the nearest neighbor in the PSC, in degrees East of North. |
smallint |
2 |
degrees |
|
POS_POS-ANG |