M |
Name | Schema Table | Database | Description | Type | Length | Unit | Default Value | Unified Content Descriptor |
M1 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Number of detections for band 1 |
int |
4 |
|
-9 |
|
M1_1_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 1 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M1_1_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 1 Maximum likelihood |
real |
4 |
|
|
|
M1_1_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 1 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M1_1_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 1 flux |
real |
4 |
erg/cm**2/s |
|
|
M1_1_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 1 flux error |
real |
4 |
erg/cm**2/s |
|
|
M1_1_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 1 Count rates |
real |
4 |
counts/s |
|
|
M1_1_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 1 Count rates error |
real |
4 |
counts/s |
|
|
M1_1_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 1 vignetting value. |
real |
4 |
|
|
|
M1_2_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 2 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M1_2_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 2 Maximum likelihood |
real |
4 |
|
|
|
M1_2_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 1 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M1_2_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 2 flux |
real |
4 |
erg/cm**2/s |
|
|
M1_2_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 2 flux error |
real |
4 |
erg/cm**2/s |
|
|
M1_2_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 2 Count rates |
real |
4 |
counts/s |
|
|
M1_2_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 2 Count rates error |
real |
4 |
counts/s |
|
|
M1_2_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 2 vignetting value. |
real |
4 |
|
|
|
M1_3_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 3 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M1_3_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 3 Maximum likelihood |
real |
4 |
|
|
|
M1_3_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 2 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M1_3_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 3 flux |
real |
4 |
erg/cm**2/s |
|
|
M1_3_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 3 flux error |
real |
4 |
erg/cm**2/s |
|
|
M1_3_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 3 Count rates |
real |
4 |
counts/s |
|
|
M1_3_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 3 Count rates error |
real |
4 |
counts/s |
|
|
M1_3_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 3 vignetting value. |
real |
4 |
|
|
|
M1_4_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 4 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M1_4_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 4 Maximum likelihood |
real |
4 |
|
|
|
M1_4_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 3 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M1_4_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 4 flux |
real |
4 |
erg/cm**2/s |
|
|
M1_4_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 4 flux error |
real |
4 |
erg/cm**2/s |
|
|
M1_4_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 4 Count rates |
real |
4 |
counts/s |
|
|
M1_4_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 4 Count rates error |
real |
4 |
counts/s |
|
|
M1_4_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 4 vignetting value. |
real |
4 |
|
|
|
M1_5_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 5 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M1_5_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 5 Maximum likelihood |
real |
4 |
|
|
|
M1_5_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 4 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M1_5_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 5 flux |
real |
4 |
erg/cm**2/s |
|
|
M1_5_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 5 flux error |
real |
4 |
erg/cm**2/s |
|
|
M1_5_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 5 Count rates |
real |
4 |
counts/s |
|
|
M1_5_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 5 Count rates error |
real |
4 |
counts/s |
|
|
M1_5_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 band 5 vignetting value. |
real |
4 |
|
|
|
M1_8_CTS |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Combined band source counts |
real |
4 |
counts |
|
|
M1_8_CTS_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Combined band source counts 1 σ error |
real |
4 |
counts |
|
|
M1_8_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 8 Maximum likelihood |
real |
4 |
|
|
|
M1_8_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 8 flux |
real |
4 |
erg/cm**2/s |
|
|
M1_8_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 8 flux error |
real |
4 |
erg/cm**2/s |
|
|
M1_8_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 8 Count rates |
real |
4 |
counts/s |
|
|
M1_8_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 8 Count rates error |
real |
4 |
counts/s |
|
|
M1_9_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 9 Maximum likelihood |
real |
4 |
|
|
|
M1_9_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 9 flux |
real |
4 |
erg/cm**2/s |
|
|
M1_9_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 9 flux error |
real |
4 |
erg/cm**2/s |
|
|
M1_9_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 9 Count rates |
real |
4 |
counts/s |
|
|
M1_9_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 band 9 Count rates error |
real |
4 |
counts/s |
|
|
M1_CHI2PROB |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The Chi² probability (based on the null hypothesis) that the source as detected by the M1 camera is constant. The Pearson approximation to Chi² for Poissonian data was used, in which the model is used as the estimator of its own variance. If more than one exposure (that is, time series) is available for this source the smallest value of probability was used. |
real |
4 |
|
|
|
M1_FILTER |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 filter. The options are Thick, Medium, Thin1, and Open, depending on the efficiency of the optical blocking. |
varchar |
6 |
|
|
|
M1_FLAG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 flag string made of the flags 1 - 12 (counted from left to right) for the PN source detection. In case where the camera was not used in the source detection a dash is given. In case a source was not detected by the M1 the flags are all set to False (default). Flag 10 is not used. |
varchar |
12 |
|
|
|
M1_HR1 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 hardness ratio between the bands 1 & 2 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
M1_HR1_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the M1 hardness ratio between the bands 1 & 2 |
real |
4 |
|
|
|
M1_HR2 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 hardness ratio between the bands 2 & 3 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
M1_HR2_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the M1 hardness ratio between the bands 2 & 3 |
real |
4 |
|
|
|
M1_HR3 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 hardness ratio between the bands 3 & 4 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
M1_HR3_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the M1 hardness ratio between the bands 3 & 4 |
real |
4 |
|
|
|
M1_HR4 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 hardness ratio between the bands 4 & 5 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
M1_HR4_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the M1 hardness ratio between the bands 4 & 5 |
real |
4 |
|
|
|
M1_MASKFRAC |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PSF weighted mean of the detector coverage of a detection as derived from the detection mask. Sources which have less than 0.15 of their PSF covered by the detector are considered as being not detected. |
real |
4 |
|
|
|
M1_OFFAX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 offaxis angle (the distance between the detection position and the onaxis position on the respective detector). The offaxis angle for a camera can be larger than 15 arcminutes when the detection is located outside the FOV of that camera. |
real |
4 |
arcmin |
|
|
M1_ONTIME |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M1 ontime value (the total good exposure time (after GTI filtering) of the CCD where the detection is positioned). If a source position falls into CCD gaps or outside of the detector it will have a NULL given. |
real |
4 |
s |
|
|
M1_SUBMODE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M1 observing mode. The options are full frame mode with the full FOV exposed, partial window mode with only parts of the central CCD exposed (in different sub-modes), and timing mode where the central CCD was not exposed ('Fast Uncompressed'). |
varchar |
16 |
|
|
|
M2 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Number of detections for band 2 |
int |
4 |
|
-9 |
|
M2_1_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 1 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M2_1_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 1 Maximum likelihood |
real |
4 |
|
|
|
M2_1_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 5 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M2_1_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 1 flux |
real |
4 |
erg/cm**2/s |
|
|
M2_1_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 1 flux error |
real |
4 |
erg/cm**2/s |
|
|
M2_1_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 1 Count rates |
real |
4 |
counts/s |
|
|
M2_1_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 1 Count rates error |
real |
4 |
counts/s |
|
|
M2_1_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 1 vignetting value. |
real |
4 |
|
|
|
M2_2_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 2 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M2_2_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 2 Maximum likelihood |
real |
4 |
|
|
|
M2_2_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 2 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M2_2_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 2 flux |
real |
4 |
erg/cm**2/s |
|
|
M2_2_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 2 flux error |
real |
4 |
erg/cm**2/s |
|
|
M2_2_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 2 Count rates |
real |
4 |
counts/s |
|
|
M2_2_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 2 Count rates error |
real |
4 |
counts/s |
|
|
M2_2_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 2 vignetting value. |
real |
4 |
|
|
|
M2_3_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 3 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M2_3_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 3 Maximum likelihood |
real |
4 |
|
|
|
M2_3_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 3 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M2_3_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 3 flux |
real |
4 |
erg/cm**2/s |
|
|
M2_3_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 3 flux error |
real |
4 |
erg/cm**2/s |
|
|
M2_3_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 3 Count rates |
real |
4 |
counts/s |
|
|
M2_3_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 3 Count rates error |
real |
4 |
counts/s |
|
|
M2_3_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 3 vignetting value. |
real |
4 |
|
|
|
M2_4_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 4 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M2_4_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 4 Maximum likelihood |
real |
4 |
|
|
|
M2_4_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 4 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M2_4_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 4 flux |
real |
4 |
erg/cm**2/s |
|
|
M2_4_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 4 flux error |
real |
4 |
erg/cm**2/s |
|
|
M2_4_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 4 Count rates |
real |
4 |
counts/s |
|
|
M2_4_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 4 Count rates error |
real |
4 |
counts/s |
|
|
M2_4_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 4 vignetting value. |
real |
4 |
|
|
|
M2_5_BG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 5 background map. Made using a 12 x 12 nodes spline fit on the source-free individual-band images. |
real |
4 |
counts/pixel |
|
|
M2_5_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 5 Maximum likelihood |
real |
4 |
|
|
|
M2_5_EXP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 5 exposure map, combining the mirror vignetting, detector efficiency, bad pixels and CCD gaps. The PSF weighted mean of the area of the subimages (radius 60 arcseconds) in the individual-band exposure maps. |
real |
4 |
s |
|
|
M2_5_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 5 flux |
real |
4 |
erg/cm**2/s |
|
|
M2_5_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 5 flux error |
real |
4 |
erg/cm**2/s |
|
|
M2_5_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 5 Count rates |
real |
4 |
counts/s |
|
|
M2_5_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 5 Count rates error |
real |
4 |
counts/s |
|
|
M2_5_VIG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 band 5 vignetting value. |
real |
4 |
|
|
|
M2_8_CTS |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Combined band source counts |
real |
4 |
counts |
|
|
M2_8_CTS_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Combined band source counts 1 σ error |
real |
4 |
counts |
|
|
M2_8_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 8 Maximum likelihood |
real |
4 |
|
|
|
M2_8_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 8 flux |
real |
4 |
erg/cm**2/s |
|
|
M2_8_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 8 flux error |
real |
4 |
erg/cm**2/s |
|
|
M2_8_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 8 Count rates |
real |
4 |
counts/s |
|
|
M2_8_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 8 Count rates error |
real |
4 |
counts/s |
|
|
M2_9_DET_ML |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 9 Maximum likelihood |
real |
4 |
|
|
|
M2_9_FLUX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 9 flux |
real |
4 |
erg/cm**2/s |
|
|
M2_9_FLUX_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 9 flux error |
real |
4 |
erg/cm**2/s |
|
|
M2_9_RATE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 9 Count rates |
real |
4 |
counts/s |
|
|
M2_9_RATE_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 band 9 Count rates error |
real |
4 |
counts/s |
|
|
M2_CHI2PROB |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The Chi² probability (based on the null hypothesis) that the source as detected by the M2 camera is constant. The Pearson approximation to Chi² for Poissonian data was used, in which the model is used as the estimator of its own variance. If more than one exposure (that is, time series) is available for this source the smallest value of probability was used. |
real |
4 |
|
|
|
M2_FILTER |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 filter. The options are Thick, Medium, Thin1, and Open, depending on the efficiency of the optical blocking. |
varchar |
6 |
|
|
|
M2_FLAG |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
PN flag string made of the flags 1 - 12 (counted from left to right) for the M2 source detection. In case where the camera was not used in the source detection a dash is given. In case a source was not detected by the M2 the flags are all set to False (default). Flag 10 is not used. |
varchar |
12 |
|
|
|
M2_HR1 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 hardness ratio between the bands 1 & 2 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
M2_HR1_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the M2 hardness ratio between the bands 1 & 2 |
real |
4 |
|
|
|
M2_HR2 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 hardness ratio between the bands 2 & 3 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
M2_HR2_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the M2 hardness ratio between the bands 2 & 3 |
real |
4 |
|
|
|
M2_HR3 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 hardness ratio between the bands 3 & 4 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
M2_HR3_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the M2 hardness ratio between the bands 3 & 4 |
real |
4 |
|
|
|
M2_HR4 |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 hardness ratio between the bands 4 & 5 In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively. |
real |
4 |
|
|
|
M2_HR4_ERR |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The 1 σ error of the M2 hardness ratio between the bands 4 & 5 |
real |
4 |
|
|
|
M2_MASKFRAC |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The PSF weighted mean of the detector coverage of a detection as derived from the detection mask. Sources which have less than 0.15 of their PSF covered by the detector are considered as being not detected. |
real |
4 |
|
|
|
M2_OFFAX |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 offaxis angle, (the distance between the detection position and the onaxis position on the respective detector). The offaxis angle for a camera can be larger than 15 arcminutes when the detection is located outside the FOV of that camera. |
real |
4 |
arcmin |
|
|
M2_ONTIME |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
The M2 ontime value (the total good exposure time (after GTI filtering) of the CCD where the detection is positioned). If a source position falls into CCD gaps or outside of the detector it will have a NULL given. |
real |
4 |
s |
|
|
M2_SUBMODE |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
M2 observing mode. The options are full frame mode with the full FOV exposed, partial window mode with only parts of the central CCD exposed (in different sub-modes), and timing mode where the central CCD was not exposed ('Fast Uncompressed'). |
varchar |
16 |
|
|
|
m2u |
Multiframe |
WSA |
Raw position of M2 U (N-S tilt) {image primary HDU keyword: M2_U} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2u |
Multiframe |
WSACalib |
Raw position of M2 U (N-S tilt) {image primary HDU keyword: M2_U} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2u |
Multiframe |
WSATransit |
Raw position of M2 U (N-S tilt) {image primary HDU keyword: M2_U} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2v |
Multiframe |
WSA |
Raw position of M2 V (E-W tilt) {image primary HDU keyword: M2_V} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2v |
Multiframe |
WSACalib |
Raw position of M2 V (E-W tilt) {image primary HDU keyword: M2_V} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2v |
Multiframe |
WSATransit |
Raw position of M2 V (E-W tilt) {image primary HDU keyword: M2_V} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2w |
Multiframe |
WSA |
Raw position of M2 W (axial rotation) {image primary HDU keyword: M2_W} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2w |
Multiframe |
WSACalib |
Raw position of M2 W (axial rotation) {image primary HDU keyword: M2_W} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2w |
Multiframe |
WSATransit |
Raw position of M2 W (axial rotation) {image primary HDU keyword: M2_W} |
real |
4 |
mrad |
-0.9999995e9 |
|
m2x |
Multiframe |
WSA |
Raw position of M2 X (E-W) {image primary HDU keyword: M2_X} |
real |
4 |
millimetres |
-0.9999995e9 |
|
m2x |
Multiframe |
WSACalib |
Raw position of M2 X (E-W) {image primary HDU keyword: M2_X} |
real |
4 |
millimetres |
-0.9999995e9 |
|
m2x |
Multiframe |
WSATransit |
Raw position of M2 X (E-W) {image primary HDU keyword: M2_X} |
real |
4 |
millimetres |
-0.9999995e9 |
|
m2y |
Multiframe |
WSA |
Raw position of M2 Y (N-S) {image primary HDU keyword: M2_Y} |
real |
4 |
millimetres |
-0.9999995e9 |
|
m2y |
Multiframe |
WSACalib |
Raw position of M2 Y (N-S) {image primary HDU keyword: M2_Y} |
real |
4 |
millimetres |
-0.9999995e9 |
|
m2y |
Multiframe |
WSATransit |
Raw position of M2 Y (N-S) {image primary HDU keyword: M2_Y} |
real |
4 |
millimetres |
-0.9999995e9 |
|
m2z |
Multiframe |
WSA |
Raw position of M2 Z (focus) {image primary HDU keyword: M2_Z} |
real |
4 |
millimetres |
-0.9999995e9 |
|
m2z |
Multiframe |
WSACalib |
Raw position of M2 Z (focus) {image primary HDU keyword: M2_Z} |
real |
4 |
millimetres |
-0.9999995e9 |
|
m2z |
Multiframe |
WSATransit |
Raw position of M2 Z (focus) {image primary HDU keyword: M2_Z} |
real |
4 |
millimetres |
-0.9999995e9 |
|
M3 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Number of detections for band 3 |
int |
4 |
|
-9 |
|
M3_6 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
Number of detections for 3.6um IRAC (Band 1) |
int |
4 |
|
-9 |
|
M3Temp |
Multiframe |
WSA |
M3 temperature {image primary HDU keyword: M3_TEMP} |
real |
4 |
degrees_Kelvin |
-0.9999995e9 |
|
M3Temp |
Multiframe |
WSACalib |
M3 temperature {image primary HDU keyword: M3_TEMP} |
real |
4 |
degrees_Kelvin |
-0.9999995e9 |
|
M3Temp |
Multiframe |
WSATransit |
M3 temperature {image primary HDU keyword: M3_TEMP} |
real |
4 |
degrees_Kelvin |
-0.9999995e9 |
|
M4 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Number of detections for band 4 |
int |
4 |
|
-9 |
|
M4_5 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
Number of detections for 4.5um IRAC (Band 2) |
int |
4 |
|
-9 |
|
M5_8 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
Number of detections for 5.8um IRAC (Band 3) |
int |
4 |
|
-9 |
|
M8_0 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
Number of detections for 8.0um IRAC (Band 4) |
int |
4 |
|
-9 |
|
mag1 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Magnitude in IRAC band 1 |
real |
4 |
mag |
99.999 |
|
mag1_err |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
1sigma mag error (IRAC band 1) |
real |
4 |
mag |
99.999 |
|
mag2 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Magnitude in IRAC band 2 |
real |
4 |
mag |
99.999 |
|
mag2_err |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
1sigma mag error (IRAC band 2) |
real |
4 |
mag |
99.999 |
|
mag3 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Magnitude in IRAC band 3 |
real |
4 |
mag |
99.999 |
|
mag3_6 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
3.6um IRAC (Band 1) magnitude |
real |
4 |
mag |
99.999 |
|
mag3_6_err |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
3.6um IRAC (Band 1) 1 sigma error |
real |
4 |
mag |
99.999 |
|
mag3_err |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
1sigma mag error (IRAC band 3) |
real |
4 |
mag |
99.999 |
|
mag4 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Magnitude in IRAC band 4 |
real |
4 |
mag |
99.999 |
|
mag4_5 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
4.5um IRAC (Band 2) magnitude |
real |
4 |
mag |
99.999 |
|
mag4_5_err |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
4.5um IRAC (Band 2) 1 sigma error |
real |
4 |
mag |
99.999 |
|
mag4_err |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
1sigma mag error (IRAC band 4) |
real |
4 |
mag |
99.999 |
|
mag5_8 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
5.8um IRAC (Band 3) magnitude |
real |
4 |
mag |
99.999 |
|
mag5_8_err |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
5.8um IRAC (Band 3) 1 sigma error |
real |
4 |
mag |
99.999 |
|
mag8_0 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
8.0um IRAC (Band 4) magnitude |
real |
4 |
mag |
99.999 |
|
mag8_0_err |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
8.0um IRAC (Band 4) 1 sigma error |
real |
4 |
mag |
99.999 |
|
MAG_AUTO |
mgcDetection |
MGC |
Kron-like elliptical aperture magnitude |
real |
4 |
mag |
|
|
MAG_AUTO_DC |
mgcDetection |
MGC |
MAG_AUTO corrected for extinction |
real |
4 |
mag |
|
|
MAG_ERR |
mgcDetection |
MGC |
Error for B_MGC |
real |
4 |
mag |
|
|
MAG_ISO |
mgcDetection |
MGC |
Isophotal magnitude |
real |
4 |
mag |
|
|
MAG_ISO_DC |
mgcDetection |
MGC |
MAG_ISO corrected for extinction |
real |
4 |
mag |
|
|
MAG_ISOCOR |
mgcDetection |
MGC |
Gaussian corrected isophotal magnitude |
real |
4 |
mag |
|
|
MAG_ISOCOR_DC |
mgcDetection |
MGC |
MAG_ISOCOR corrected for extinction |
real |
4 |
mag |
|
|
magH |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
2MASS All-Sky PSC H Band magnitude |
real |
4 |
mag |
99.999 |
|
magH_err |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
2MASS All-Sky PSC H Band 1 sigma error |
real |
4 |
mag |
99.999 |
|
magJ |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
2MASS All-Sky PSC J Band magnitude |
real |
4 |
mag |
99.999 |
|
magJ_err |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
2MASS All-Sky PSC J Band 1 sigma error |
real |
4 |
mag |
99.999 |
|
magK |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
2MASS All-Sky PSC Ks Band magnitude |
real |
4 |
mag |
99.999 |
|
magKs_err |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
2MASS All-Sky PSC Ks Band 1 sigma error |
real |
4 |
mag |
99.999 |
|
maj |
first08Jul16Source, firstSource |
FIRST |
major axes derived from the elliptical Gaussian model for the source after deconvolution. |
real |
4 |
arcsec |
|
EXTENSION_FWHM_MAJ |
majAxis |
nvssSource |
NVSS |
Fitted (deconvolved) major axis of radio source |
real |
4 |
arcsec |
|
EXTENSION_FWHM_MAJ |
major |
iras_psc |
IRAS |
Uncertainty ellipse major axis |
smallint |
2 |
arcsec |
|
ERROR |
maskID |
Multiframe |
WSA |
UID of library object mask frame {image extension keyword: CIR_OPM} |
bigint |
8 |
|
-99999999 |
ID_FRAME |
maskID |
Multiframe |
WSACalib |
UID of library object mask frame {image extension keyword: CIR_OPM} |
bigint |
8 |
|
-99999999 |
ID_FRAME |
maskID |
Multiframe |
WSATransit |
UID of library object mask frame {image extension keyword: CIR_OPM} |
bigint |
8 |
|
-99999999 |
ID_FRAME |
masterObjID |
calSourceNeighbours, calSourceXSynopticSource |
WSACalib |
The unique ID in calSource (=sourceID) |
bigint |
8 |
|
|
ID_MAIN |
masterObjID |
calSourceXtwomass_psc, calSourceXukirtFSstars |
WSACalib |
The unique ID in calSource (=objID) |
bigint |
8 |
|
|
ID_MAIN |
masterObjID |
dxsSourceNeighbours, dxsSourceXDR7PhotoObj, dxsSourceXDetection, dxsSourceXStripe82PhotoObjAll, dxsSourceXtwomass_psc, dxsSourceXtwoxmm |
WSA |
The unique ID in dxsSource (=sourceID) |
bigint |
8 |
|
|
ID_MAIN |
masterObjID |
gcsSourceNeighbours, gcsSourceXDR5PhotoObj, gcsSourceXDR7PhotoObj, gcsSourceXtwomass_psc, gcsSourceXtwoxmm |
WSA |
The unique ID in gcsSource (=sourceID) |
bigint |
8 |
|
|
ID_MAIN |
masterObjID |
lasSourceNeighbours, lasSourceXDR2PhotoObj, lasSourceXDR3PhotoObj, lasSourceXDR5PhotoObj, lasSourceXDR5PhotoObjAll, lasSourceXDR7PhotoObj, lasSourceXDR7PhotoObjAll, lasSourceXSSASource, lasSourceXSegueDR6PhotoObj, lasSourceXSegueDR6PhotoObjAll, lasSourceXStripe82PhotoObjAll, lasSourceXfirstSource, lasSourceXiras_psc, lasSourceXmgcDetection, lasSourceXnvssSource, lasSourceXrosat_bsc, lasSourceXrosat_fsc, lasSourceXtwomass_psc, lasSourceXtwomass_xsc, lasSourceXtwoxmm |
WSA |
The unique ID in lasSource (=sourceID) |
bigint |
8 |
|
|
ID_MAIN |
masterObjID |
udsSourceNeighbours, udsSourceXDetection, udsSourceXtwomass_psc, udsSourceXtwoxmm |
WSA |
The unique ID in udsSource (=sourceID) |
bigint |
8 |
|
|
ID_MAIN |
MATCH_1XMM |
twoxmm, twoxmm_v1_2 |
XMM |
The IAU name of the 1XMM source ID matched within radius of 3 arcsec and using the closest candidate. |
varchar |
21 |
|
|
|
MATCH_2XMMP |
twoxmm, twoxmm_v1_2 |
XMM |
The IAU name of the 2XMMp source ID matched within radius of 3" and using the closest candidate. |
varchar |
22 |
|
|
|
maxDec |
CurrentAstrometry |
WSACalib |
The maximum Dec (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_DEC_MAIN |
maxDec |
CurrentAstrometry |
WSATransit |
The maximum Dec (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_DEC_MAIN |
maxDec |
CurrentAstrometry, PreviousAstrometry |
WSA |
The maximum Dec (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_DEC_MAIN |
maxPllx |
calVariability |
WSACalib |
Upper limit of 90% confidence interval for parallax measurement |
real |
4 |
mas |
-0.9999995e9 |
|
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
maxPllx |
dxsVariability, udsVariability |
WSA |
Upper limit of 90% confidence interval for parallax measurement |
real |
4 |
mas |
-0.9999995e9 |
|
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
maxRa |
CurrentAstrometry |
WSACalib |
The maximum RA (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_RA_OTHER |
maxRa |
CurrentAstrometry |
WSATransit |
The maximum RA (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_RA_OTHER |
maxRa |
CurrentAstrometry, PreviousAstrometry |
WSA |
The maximum RA (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_RA_OTHER |
meanMjdObs |
calSynopticMergeLog |
WSACalib |
Mean modified julian date of frameset. |
float |
8 |
days |
-0.9999995e9 |
TIME_DATE |
mergedClass |
calSource, calSynopticSource |
WSACalib |
Class flag from available measurements (1|0|-1|-2|-3|-9=galaxy|noise|stellar|probableStar|probableGalaxy|saturated) |
smallint |
2 |
|
|
CODE_MISC |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
mergedClass |
calSourceRemeasurement |
WSACalib |
Class flag based on list remeasurement prescription |
smallint |
2 |
|
|
CODE_MISC |
mergedClass |
dxsJKsource, gcsPointSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, lasExtendedSource, lasPointSource, lasYJHKsource, reliableDxsSource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource, reliableUdsSource |
WSA |
Class flag from available measurements (1|0|-1|-2|-3|-9=galaxy|noise|stellar|probableStar|probableGalaxy|saturated) |
smallint |
2 |
|
|
CODE_MISC |
mergedClass |
dxsSource, gcsSource, gpsSource, lasSource, udsSource |
WSA |
Class flag from available measurements (1|0|-1|-2|-3|-9=galaxy|noise|stellar|probableStar|probableGalaxy|saturated) |
smallint |
2 |
|
|
CODE_MISC |
Individual detection classifications are combined in the source merging process to produce a set of attributes for each merged source as follows. Presently, a basic classification table is defined that assigns reasonably accurate, self-consistent probability values for a given classification code: Flag | Meaning | Probability (%) | | | Star | Galaxy | Noise | Saturated | -9 | Saturated | 0.0 | 0.0 | 5.0 | 95.0 | -3 | Probable galaxy | 25.0 | 70.0 | 5.0 | 0.0 | -2 | Probable star | 70.0 | 25.0 | 5.0 | 0.0 | -1 | Star | 90.0 | 5.0 | 5.0 | 0.0 | 0 | Noise | 5.0 | 5.0 | 90.0 | 0.0 | +1 | Galaxy | 5.0 | 90.0 | 5.0 | 0.0 | Then, each separately available classification is combined for a merged source using Bayesian classification rules, assuming each datum is independent: P(classk)=ΠiP(classk)i / ΣkΠiP(classk)i where classk is one of star|galaxy|noise|saturated, and i denotes the ith single detection passband measurement available (the non-zero entries are necessary for the independent measures method to work, since some cases might otherwise be mutually exclusive). For example, if an object is classed in J|H|K as -1|-2|+1 it would have merged classification probabilities of pStar=73.5%, pGalaxy=26.2%, pNoise=0.3% and pSaturated=0.0%. Decision thresholds for the resulting discrete classification flag mergedClass are 90% for definitive and 70% for probable; hence the above example would be classified (not unreasonably) as probably a star (mergedClass=-2). An additional decision rule enforces mergedClass=-9 (saturated) when any individual classification flag indicates saturation. |
mergedClass |
dxsSourceRemeasurement, gcsSourceRemeasurement, gpsSourceRemeasurement, lasSourceRemeasurement, udsSourceRemeasurement |
WSA |
Class flag based on list remeasurement prescription |
smallint |
2 |
|
|
CODE_MISC |
mergedClassStat |
calSource, calSynopticSource |
WSACalib |
Merged N(0,1) stellarness-of-profile statistic |
real |
4 |
|
-0.9999995e9 |
STAT_PROP |
This profile classification statistic is a continuously distributed, Gaussian N(0,1) (i.e. zero mean, unit variance) statistic formed from the available individual classification statistics by averaging them and multiplying by N1/2 such that cuts on mergedClassStat result in completeness being independent of number of frames an object appears on, but with reliability improving with the number of frames. |
mergedClassStat |
dxsJKsource, gcsPointSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, lasExtendedSource, lasPointSource, lasYJHKsource, reliableDxsSource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource |
WSA |
Merged N(0,1) stellarness-of-profile statistic |
real |
4 |
|
-0.9999995e9 |
STAT_PROP |
mergedClassStat |
dxsSource, gcsSource, gpsSource, lasSource |
WSA |
Merged N(0,1) stellarness-of-profile statistic |
real |
4 |
|
-0.9999995e9 |
STAT_PROP |
This profile classification statistic is a continuously distributed, Gaussian N(0,1) (i.e. zero mean, unit variance) statistic formed from the available individual classification statistics by averaging them and multiplying by N1/2 such that cuts on mergedClassStat result in completeness being independent of number of frames an object appears on, but with reliability improving with the number of frames. |
mergedClassStat |
reliableUdsSource |
WSA |
Merged S-Extractor classification statistic |
real |
4 |
|
-0.9999995e9 |
STAT_PROP |
mergedClassStat |
udsSource |
WSA |
Merged S-Extractor classification statistic |
real |
4 |
|
-0.9999995e9 |
STAT_PROP |
Inverse variance-weighted mean of the available individual passband S-Extractor classification statistics *ClassStat. |
mergeLogTable |
Programme |
WSA |
Table name of curation log for source merging |
varchar |
64 |
|
|
?? |
mergeLogTable |
Programme |
WSACalib |
Table name of curation log for source merging |
varchar |
64 |
|
|
?? |
mergeLogTable |
Programme |
WSATransit |
Table name of curation log for source merging |
varchar |
64 |
|
|
?? |
mergeSwVersion |
calMergeLog, calSynopticMergeLog |
WSACalib |
version number of the software used to merge the frames |
real |
4 |
|
|
ID_VERSION |
mergeSwVersion |
dxsJKmergeLog, dxsMergeLog, gcsMergeLog, gcsZYJHKmergeLog, gpsJHKmergeLog, gpsMergeLog, lasMergeLog, lasYJHKmergeLog, udsMergeLog |
WSA |
version number of the software used to merge the frames |
real |
4 |
|
|
ID_VERSION |
method |
RequiredDiffImage |
WSA |
CASU difference image tool option string specifying the method to employ (recommended value=adaptive/back/zerosky) |
varchar |
64 |
|
|
?? |
method |
RequiredDiffImage |
WSACalib |
CASU difference image tool option string specifying the method to employ (recommended value=adaptive/back/zerosky) |
varchar |
64 |
|
|
?? |
method |
RequiredDiffImage |
WSATransit |
CASU difference image tool option string specifying the method to employ (recommended value=adaptive/back/zerosky) |
varchar |
64 |
|
|
?? |
MF1 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Flux calc mathod flag for band 1 flux |
int |
4 |
|
-9 |
|
MF2 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Flux calc mathod flag for band 2 flux |
int |
4 |
|
-9 |
|
MF3 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Flux calc mathod flag for band 3 flux |
int |
4 |
|
-9 |
|
MF3_6 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
Flux calculation method flag 3.6um IRAC (Band 1) |
int |
4 |
|
-9 |
|
MF4 |
glimpse_hrc_inter, glimpse_mca_inter |
GLIMPSE |
Flux calc mathod flag for band 4 flux |
int |
4 |
|
-9 |
|
MF4_5 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
Flux calculation method flag 4.5um IRAC (Band 2) |
int |
4 |
|
-9 |
|
MF5_8 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
Flux calculation method flag 5.8um IRAC (Band 3) |
int |
4 |
|
-9 |
|
MF8_0 |
glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca |
GLIMPSE |
Flux calculation method flag 8.0um IRAC (Band 4) |
int |
4 |
|
-9 |
|
mFlag |
rosat_bsc, rosat_fsc |
ROSAT |
source missed by SASS |
varchar |
1 |
|
|
CODE_MISC |
MGC_B_KCORR |
mgcGalaxyStruct |
MGC |
MGC B-band K-correction |
real |
4 |
|
0.000 |
|
MGC_BEST_Z |
mgcGalaxyStruct |
MGC |
Best redshift |
real |
4 |
|
9.99999 |
|
MGC_BEST_ZQUAL |
mgcGalaxyStruct |
MGC |
Quality of best redshift (0-2 = BAD, 3-5=GOOD, 9=Not observed) |
tinyint |
1 |
|
9 |
|
MGC_HLR_TRUE |
mgcGalaxyStruct |
MGC |
Seeing corrected Half light radius |
real |
4 |
arcsecs |
|
|
MGC_SEEING |
mgcGalaxyStruct |
MGC |
Seeing of MGC field |
real |
4 |
arcsecs |
|
|
MGC_SPEC_TYPE |
mgcGalaxyStruct |
MGC |
Best spectral type fit from Poggianti (1998)sample (type+age, i.e., el150 = E/S0 15.0Gyrs) |
varchar |
8 |
|
none |
|
MGCFN |
mgcDetection |
MGC |
MGC field number |
int |
4 |
|
|
|
MGCID |
mgcBrightSpec, mgcDetection, mgcGalaxyStruct |
MGC |
MGC object ID |
bigint |
8 |
|
|
|
MGCZ_ZHELIO |
mgcBrightSpec |
MGC |
MGCz heliocentric redshift |
real |
4 |
|
|
|
MGCZ_ZQUAL |
mgcBrightSpec |
MGC |
MGCz redshift quality |
tinyint |
1 |
|
|
|
mHcon |
iras_psc |
IRAS |
Possible number of HCONs |
tinyint |
1 |
|
|
NUMBER |
min |
first08Jul16Source, firstSource |
FIRST |
minor axes derived from the elliptical Gaussian model for the source after deconvolution. |
real |
4 |
arcsec |
|
EXTENSION_FWHM_MIN |
minAxis |
nvssSource |
NVSS |
Fitted (deconvolved) minor axis of radio source |
real |
4 |
arcsec |
|
EXTENSION_FWHM_MIN |
minDec |
CurrentAstrometry |
WSACalib |
The minimum Dec (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_DEC_MAIN |
minDec |
CurrentAstrometry |
WSATransit |
The minimum Dec (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_DEC_MAIN |
minDec |
CurrentAstrometry, PreviousAstrometry |
WSA |
The minimum Dec (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_DEC_MAIN |
minImageSize |
MultiframeDetector |
WSA |
Minimum size for images {catalogue extension keyword: MINPIX} |
int |
4 |
pixels |
-99999999 |
?? |
Tunable parameter, in conjunction with the threshold above this determines how deep and how small "real" images can be. The default precludes many of the few pixel-hit cosmic rays from being considered since "real" images must have 4 contiguous simply-connected pixels in the union of the detection filter and data domains. For more details on image detection and parameterisation see the papers in CASU WFCAM/VISTA Publications. |
minImageSize |
MultiframeDetector |
WSACalib |
Minimum size for images {catalogue extension keyword: MINPIX} |
int |
4 |
pixels |
-99999999 |
?? |
Tunable parameter, in conjunction with the threshold above this determines how deep and how small "real" images can be. The default precludes many of the few pixel-hit cosmic rays from being considered since "real" images must have 4 contiguous simply-connected pixels in the union of the detection filter and data domains. For more details on image detection and parameterisation see the papers in CASU WFCAM/VISTA Publications. |
minImageSize |
MultiframeDetector |
WSATransit |
Minimum size for images {catalogue extension keyword: MINPIX} |
int |
4 |
pixels |
-99999999 |
?? |
Tunable parameter, in conjunction with the threshold above this determines how deep and how small "real" images can be. The default precludes many of the few pixel-hit cosmic rays from being considered since "real" images must have 4 contiguous simply-connected pixels in the union of the detection filter and data domains. For more details on image detection and parameterisation see the papers in CASU WFCAM/VISTA Publications. |
minor |
iras_psc |
IRAS |
Uncertainty ellipse minor axis |
smallint |
2 |
arcsec |
|
ERROR |
minPllx |
calVariability |
WSACalib |
Lower limit of 90% confidence interval for parallax measurement |
real |
4 |
mas |
-0.9999995e9 |
|
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
minPllx |
dxsVariability, udsVariability |
WSA |
Lower limit of 90% confidence interval for parallax measurement |
real |
4 |
mas |
-0.9999995e9 |
|
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
minRa |
CurrentAstrometry |
WSACalib |
The minimum RA (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_RA_OTHER |
minRa |
CurrentAstrometry |
WSATransit |
The minimum RA (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_RA_OTHER |
minRa |
CurrentAstrometry, PreviousAstrometry |
WSA |
The minimum RA (J2000) on the device |
float |
8 |
Degrees |
-0.9999995e9 |
POS_EQ_RA_OTHER |
mirrBottTempNW |
Multiframe |
WSA |
Mirror bottom temp. NW {image primary HDU keyword: MIRRBTNW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrBottTempNW |
Multiframe |
WSACalib |
Mirror bottom temp. NW {image primary HDU keyword: MIRRBTNW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrBottTempNW |
Multiframe |
WSATransit |
Mirror bottom temp. NW {image primary HDU keyword: MIRRBTNW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempNE |
Multiframe |
WSA |
Mirror temperature NE {image primary HDU keyword: MIRR_NE} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempNE |
Multiframe |
WSACalib |
Mirror temperature NE {image primary HDU keyword: MIRR_NE} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempNE |
Multiframe |
WSATransit |
Mirror temperature NE {image primary HDU keyword: MIRR_NE} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempNW |
Multiframe |
WSA |
Mirror temperature NW {image primary HDU keyword: MIRR_NW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempNW |
Multiframe |
WSACalib |
Mirror temperature NW {image primary HDU keyword: MIRR_NW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempNW |
Multiframe |
WSATransit |
Mirror temperature NW {image primary HDU keyword: MIRR_NW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempSE |
Multiframe |
WSA |
Mirror temperature SE {image primary HDU keyword: MIRR_SE} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempSE |
Multiframe |
WSACalib |
Mirror temperature SE {image primary HDU keyword: MIRR_SE} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempSE |
Multiframe |
WSATransit |
Mirror temperature SE {image primary HDU keyword: MIRR_SE} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempSW |
Multiframe |
WSA |
Mirror temperature SW {image primary HDU keyword: MIRR_SW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempSW |
Multiframe |
WSACalib |
Mirror temperature SW {image primary HDU keyword: MIRR_SW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTempSW |
Multiframe |
WSATransit |
Mirror temperature SW {image primary HDU keyword: MIRR_SW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTopTempNW |
Multiframe |
WSA |
Mirror top temp. NW {image primary HDU keyword: MIRRTPNW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTopTempNW |
Multiframe |
WSACalib |
Mirror top temp. NW {image primary HDU keyword: MIRRTPNW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
mirrTopTempNW |
Multiframe |
WSATransit |
Mirror top temp. NW {image primary HDU keyword: MIRRTPNW} |
real |
4 |
degrees_Celsius |
-0.9999995e9 |
PHYS_TEMP_MISC |
MJD_START |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Modified Julian Date (i.e., JD - 2400000.5) of the start of the observation. |
float |
8 |
days |
|
|
MJD_STOP |
twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 |
XMM |
Modified Julian Date (i.e., JD - 2400000.5) of the end of the observation. |
float |
8 |
|
|
|
mjdObs |
Multiframe |
WSA |
Modified Julian Date of the observation {image primary HDU keyword: MJD-OBS} |
float |
8 |
|
-0.9999995e9 |
TIME_DATE |
mjdObs |
Multiframe |
WSACalib |
Modified Julian Date of the observation {image primary HDU keyword: MJD-OBS} |
float |
8 |
|
-0.9999995e9 |
TIME_DATE |
mjdObs |
Multiframe |
WSATransit |
Modified Julian Date of the observation {image primary HDU keyword: MJD-OBS} |
float |
8 |
|
-0.9999995e9 |
TIME_DATE |
modDate |
rosat_bsc, rosat_fsc |
ROSAT |
date when source properties were changed (MM-DD-YYYY) |
datetime |
8 |
mm-dd-yyyy |
|
TIME_DATE |
modelDistSecs |
calSourceXSynopticSourceBestMatch |
WSACalib |
separation from expected position given astrometric model in calSource variability. |
real |
4 |
arcsec |
-0.9999995e9 |
|
modelDistSecs |
dxsSourceXDetectionBestMatch |
WSA |
separation from expected position given astrometric model in dxsSource variability. |
real |
4 |
arcsec |
-0.9999995e9 |
|
modelDistSecs |
udsSourceXDetectionBestMatch |
WSA |
separation from expected position given astrometric model in udsSource variability. |
real |
4 |
arcsec |
-0.9999995e9 |
|
MORPH_TYPE |
mgcGalaxyStruct |
MGC |
SPD's EYEBALL morphology (1=E/S0, 2=Sabc, 3=Sd/Irr, 4=dE) |
tinyint |
1 |
|
0 |
|
morphClassFlag |
MultiframeDetector |
WSA |
Image morphological classifier flag, set if the classifier has been run. If so an object classification flag and a stellarness index is included in the binary table columns. {catalogue extension keyword: CLASSIFD} |
tinyint |
1 |
|
0 |
CODE_MISC |
morphClassFlag |
MultiframeDetector |
WSACalib |
Image morphological classifier flag, set if the classifier has been run. If so an object classification flag and a stellarness index is included in the binary table columns. {catalogue extension keyword: CLASSIFD} |
tinyint |
1 |
|
0 |
CODE_MISC |
morphClassFlag |
MultiframeDetector |
WSATransit |
Image morphological classifier flag, set if the classifier has been run. If so an object classification flag and a stellarness index is included in the binary table columns. {catalogue extension keyword: CLASSIFD} |
tinyint |
1 |
|
0 |
CODE_MISC |
mosaicTool |
Programme |
WSA |
Name of mosaicing tool to be used |
varchar |
8 |
|
NONE |
?? |
mosaicTool |
Programme |
WSACalib |
Name of mosaicing tool to be used |
varchar |
8 |
|
NONE |
?? |
mosaicTool |
Programme |
WSATransit |
Name of mosaicing tool to be used |
varchar |
8 |
|
NONE |
?? |
motionModel |
calVarFrameSetInfo |
WSACalib |
Motion model used to produce BestMatch table. Values: static; proper motion; proper motion and parallax. |
varchar |
32 |
|
static |
|
Motion model for frameset in question. This can be static: all objects in the frameset are assumed to be stationary; proper motion: all objects in the frameset are fit for a linear proper motion; proper motion and parallax: all objects in the frameset are fit for a linear proper motion and a parallax. In all cases, objects are assumed to be stars with small values of proper motion and parallax. |
motionModel |
dxsVarFrameSetInfo |
WSA |
Motion model used to produce BestMatch table. Values: static;proper motion;proper motion and parallax. |
varchar |
32 |
|
static |
|
Motion model for frameset in question. This can be static: all objects in the frameset are assumed to be stationary; proper motion: all objects in the frameset are fit for a linear proper motion; proper motion and parallax: all objects in the frameset are fit for a linear proper motion and a parallax. In all cases, objects are assumed to be stars with small values of proper motion and parallax. |
motionModel |
udsVarFrameSetInfo |
WSA |
Motion model used to produce BestMatch table. Values: static; proper motion; proper motion and parallax. |
varchar |
32 |
|
static |
|
Motion model for frameset in question. This can be static: all objects in the frameset are assumed to be stationary; proper motion: all objects in the frameset are fit for a linear proper motion; proper motion and parallax: all objects in the frameset are fit for a linear proper motion and a parallax. In all cases, objects are assumed to be stars with small values of proper motion and parallax. |
mp_flg |
twomass_psc |
2MASS |
Minor Planet Flag. |
smallint |
2 |
|
|
CODE_MISC |
mp_flg |
twomass_sixx2_psc |
2MASS |
src is positionally associated with an asteroid, comet, etc |
smallint |
2 |
|
|
|
mp_key |
twomass_xsc |
2MASS |
key to minor planet prediction DB record. |
int |
4 |
|
|
ID_NUMBER |
msbID |
Multiframe |
WSA |
Id min.-schedulable block {image primary HDU keyword: MSBID} |
varchar |
64 |
|
NONE |
ID_NUMBER |
msbID |
Multiframe |
WSACalib |
Id min.-schedulable block {image primary HDU keyword: MSBID} |
varchar |
64 |
|
NONE |
ID_NUMBER |
msbID |
Multiframe |
WSATransit |
Id min.-schedulable block {image primary HDU keyword: MSBID} |
varchar |
64 |
|
NONE |
ID_NUMBER |
msbRejected |
Multiframe |
WSA |
Cause of MSB rejection, default if not rejected {image primary HDU keyword: MSBFUD} |
varchar |
256 |
|
NONE |
|
msbRejected |
Multiframe |
WSACalib |
Cause of MSB rejection, default if not rejected {image primary HDU keyword: MSBFUD} |
varchar |
256 |
|
NONE |
|
msbRejected |
Multiframe |
WSATransit |
Cause of MSB rejection, default if not rejected {image primary HDU keyword: MSBFUD} |
varchar |
256 |
|
NONE |
|
MU_EFF |
mgcBrightSpec |
MGC |
Effective surface brightness |
real |
4 |
mag arcsec^-2 |
|
|
muDec |
calVariability |
WSACalib |
Proper motion in Dec |
real |
4 |
mas/yr |
-0.9999995e9 |
POS_EQ_PMDEC |
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
muDec |
dxsVariability, udsVariability |
WSA |
Proper motion in Dec |
real |
4 |
mas/yr |
-0.9999995e9 |
POS_EQ_PMDEC |
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
muDec |
gcsPointSource, gcsSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, gpsSource, lasExtendedSource, lasPointSource, lasSource, lasYJHKsource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource |
WSA |
Proper motion in Dec direction |
real |
4 |
mas/yr |
-0.9999995e9 |
POS_EQ_PMDEC |
multiframeID |
allFrameSets, CurrentAstrometry, dxsAstrometricInfo, dxsDetection, dxsFrameSets, dxsListRemeasurement, dxsSourceXDetectionBestMatch, gcsDetection, gcsFrameSets, gcsListRemeasurement, gpsDetection, gpsFrameSets, gpsListRemeasurement, lasDetection, lasFrameSets, lasListRemeasurement, MultiframeDetector, PreviousAstrometry, PreviousMFDZP, ProgrammeFrame, UKIDSSDetection, udsAstrometricInfo, udsDetection, udsFrameSets, udsListRemeasurement, udsSourceXDetectionBestMatch |
WSA |
the UID of the relevant multiframe |
bigint |
8 |
|
|
ID_FRAME |
multiframeID |
CurrentAstrometry, calDetection, calListRemeasurement |
WSACalib |
the UID of the relevant multiframe |
bigint |
8 |
|
|
ID_FRAME |
multiframeID |
CurrentAstrometry, ptsDetection |
WSATransit |
the UID of the relevant multiframe |
bigint |
8 |
|
|
ID_FRAME |
multiframeID |
Multiframe |
WSA |
UID of the multiframe (assigned sequentially by the archive ingest process) |
bigint |
8 |
|
|
ID_FRAME |
multiframeID |
Multiframe |
WSACalib |
UID of the multiframe (assigned sequentially by the archive ingest process) |
bigint |
8 |
|
|
ID_FRAME |
multiframeID |
Multiframe |
WSATransit |
UID of the multiframe (assigned sequentially by the archive ingest process) |
bigint |
8 |
|
|
ID_FRAME |
multiframeID |
Provenance |
WSA |
the UID of the component frame |
bigint |
8 |
|
|
ID_FRAME |
multiframeID |
Provenance |
WSACalib |
the UID of the component frame |
bigint |
8 |
|
|
ID_FRAME |
multiframeID |
Provenance |
WSATransit |
the UID of the component frame |
bigint |
8 |
|
|
ID_FRAME |
muRa |
calVariability |
WSACalib |
Proper motion in RA |
real |
4 |
mas/yr |
-0.9999995e9 |
POS_EQ_PMRA |
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
muRa |
dxsVariability, udsVariability |
WSA |
Proper motion in RA |
real |
4 |
mas/yr |
-0.9999995e9 |
POS_EQ_PMRA |
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table. |
muRa |
gcsPointSource, gcsSource, gcsZYJHKsource, gpsJHKsource, gpsPointSource, gpsSource, lasExtendedSource, lasPointSource, lasSource, lasYJHKsource, reliableGcsPointSource, reliableGpsPointSource, reliableLasPointSource |
WSA |
Proper motion in RA direction |
real |
4 |
mas/yr |
-0.9999995e9 |
POS_EQ_PMRA |