
VISTA DATA FLOW SYSTEM
(VDFS)

—————————–

for VISTA & WFCAM data

Science Archive Software Architecture Design

author
R.S. Collins (WFAU Edinburgh)

Software Developer
number

VDF-WFA-VSA-009
issue
1.0

date
September 2006

co-authors
I. Bond, N.J. Cross, N.C. Hambly, E.T.W. Sutorius

VDF-WFA-VSA-009 , 1.0 , September 2006 2

Contents

1 SCOPE 3

2 OVERVIEW 3

3 FUNDAMENTALS 4

3.1 Rationale . 4

3.2 OS Level Components and Deployment . 4

4 SOFTWARE DESIGN 6

4.1 Introduction . 6

4.2 Database Package . 6

4.3 Curation Tasks . 8

4.4 Database Table Preparation . 9

4.5 Code Reference Documentation . 9

5 CURATION USE CASES 13

5.1 CU1 . 14

5.2 CU2 . 15

5.3 CU3 . 15

5.3.1 ProvenanceFiller . 16

5.4 CU4 . 16

5.5 CU7 . 17

5.6 CU13 . 18

5.7 CU14 . 18

5.8 CU16 . 19

5.9 CU18 . 21

5.10 CU19 . 21

5.11 CU21 . 21

6 DATA FLOW 22

6.1 Schema-driven code features . 22

6.2 Programmes . 24

7 THE CURATION DISCOVERY TOOL 26

A ACRONYMS & ABBREVIATIONS 28

B APPLICABLE DOCUMENTS 29

C CHANGE RECORD 29

D NOTIFICATION LIST 29

VDF-WFA-VSA-009 , 1.0 , September 2006 3

1 SCOPE

This document presents the design of the curation software architecture for the WFCAM Science
Archive (WSA), which will also be used for the VISTA Science Archive (VSA). The intended audience
are those members of the VSA team directly involved in the construction of the archive. This document
is also expected to be informative to interested external parties.

The exact implementation of the software will inevitable change with time, so rather than providing a
detailed documentation of each individual code module here, we instead refer the reader to the on-line
code documentation [2], which is automatically generated from the latest source code. Only curation
software design is detailed in this document. For web access software design please refer to the User
Interface Document (VDF-WFA-VSA-008).

Also included in this document is a description of the data flow in the science archive, from the initial
input of individual FITS catalogue and multiframe metadata products provided by CASU to the final
prepared database product that is presented to the users.

The requirement of this document is a consequence of one of the findings of the Critical Design Review
that expressed a need for a design of the software architecture. The external requirements on the design
follow on from the content of the Hardware/OS/DBMS Design Document (VDF-WFA-VSA-006), the
Database Design Document (VDF-WFA-VSA-007), and the User Interface Document (VDF-WFA-
VSA-008). Also relevant is the Interface Control Document (VDF-WFA-VSA-004) which determines
the requirements on the format of data to be transfered from CASU to WFAU and into the archive.

2 OVERVIEW

The software architecture is constrained to work within the confines of the entire archive design from
hardware to database to end-user interface design. Therefore, this document begins with a background
to the software architecture design in section 3 reminding the reader of how the software architecture
fits in with the rest of the archive design. This includes a recap of the revelant hardware design and
description of the architecture from an operating system standpoint.

In section 4 we present the overall design of the software architecture, which is an overview of the code
designed for developers, but also provides the context for section 5. This section provides descriptions
of the procedures performed by each science archive curation use case, detailing how these fit in with
the overall software architecture.

Finally, section 6 describes the data flow in the science archive, from the initial individual FITS cat-
alogue and multiframe metadata products provided by CASU to the final prepared database product
that is presented to the users.

VDF-WFA-VSA-009 , 1.0 , September 2006 4

3 FUNDAMENTALS

3.1 Rationale

The software architecture design for the VSA follows on from the work documented previously. Here
we briefly recap what has been done so far:

• The Hardware/OS/DBMS Design Document (VDF-WFA-VSA-006) described the hardware on
which all of the above will be deployed. The various computer systems and their operating
systems were described along details on how they will be networked.

• In the Database Design Document (VDF-WFA-VSA-007), the scenarios performed by the archive
scientist were expanded upon and developed into the identification of 20 curation use cases.
Details on how pixel, catalogue, and other data are stored in the VSA were given with particular
reference to design of database schemas and tables that will be managed by the DBMS.

• The User Interface Document (VDF-WFA-VSA-008) described how data will be delivered to the
end user and described the underlying software that will be involved.

In this document, all this is taken to the next level by presenting detailed designs of the software
architecture. Here, it is necessary to identify real software entities (as opposed to abstract modelling
concepts), show their inter-dependencies and inter-relationships, and show where they will be deployed
within the VSA. In designing the software architecture, we are taking a component oriented view. The
goals of this is to enable re-use of individual software components and also to be able to replace existing
components with newer, perhaps upgraded, ones with a minimum of disruption to the system as a
whole.

3.2 OS Level Components and Deployment

In this section a top level view of the system architecture is given. Here we consider operating systems
to be used along with high level enabling systems such as web servers, database management systems,
and Java containers. These are listed in table 1. The overall role of these components is to run the
computer systems involved and to provide a framework which enables development of components
that required functionality of the VSA. Figure 1 shows the deployment of the top level components
on the hardware described in the Hardware Design Document (VDF-WFA-VSA-006).

As can be seen in figure 1, and as described in the Hardware Design Document, the software archi-
tecture of the VSA will be deployed on a number of servers.

• The Web Server is a PC running Linux which provides the entry point for users to access data
products from the VSA. All user interface components will be deployed here.

• The Catalogue Server is a PC running under Windows which contains a copy of the latest release
of databased products. It is from here that catalogue data products are provided to the user,
via the web server.

• The Load Server is a PC running under Windows which is used by the archive scientists for
managing the VSA.

• The Curation Server is a PC running Linux onto which the VSA curation use cases are deployed.
This server will run all the software requiring pixel and catalogue data processing involved in
generating archived data products as well as handling those tasks requiring connections to the
database management system deployed on the load and catalogue servers. This server will be
one of the servers that form one node of the mass storage system.

VDF-WFA-VSA-009 , 1.0 , September 2006 5

Component Name Stereotype Deployment Function

Linux OS Curation Server,
Web Server

operating system

Microsoft Windows OS Catalogue Server,
Load Server

operating system

MS SQL Server DBMS Catalogue Server,
Load Server

DB management system

Apache HTTP
server

Web Server HTTP server

Tomcat Java code Web Server Servelet container classes

Table 1: Operating system level components deployed on the VSA.

Figure 1: UML deployment diagram showing the main hardware and operating system components
of the VISTA Science Archive.

VDF-WFA-VSA-009 , 1.0 , September 2006 6

4 SOFTWARE DESIGN

4.1 Introduction

Several developers contribute to the VSA software source code and so a central CVS repository [3]
is utilised to managed code changes. The formal directory structure for the software is presented in
figure 2. Wherever possible the archive software is written in the Python language, with all curation
tasks scripted in Python. For the more intensive data processing tasks the software is written in C++.
Either a Python/C++ interface wrapper is used to directly call the C++ functions or the C++ code
is executed as an external process.

The primary task of the curation software is to prepare a database with data sourced from FITS files.
To access the FITS files from the Python software we use the PyFits library, and from the C++
software we use CFITSIO.

Interaction with the DBMS by our software is made possible by ODBC, the industry standard API
for DBMS connections. The obvious choice for an ODBC implementation to be used by our Python
software was mxODBC, for which we were provided with a free ‘non-commercial use’ license. mxODBC is
the most reliable and highest quality ODBC implementation, having been designed in collaboration
with the developers of the Python language. As the DBMS is hosted on a Windows PC, and the
Python software is served by a Linux PC, the ODBC connection consists of many layers. On the
Linux PC the Python code calls mxODBC, which makes use of unixODBC, which in turn uses FreeTDS

to connect to the ODBC API on the Microsoft SQL Server PC.

Alternatively flat-file table data may be transfered into and out of the database through files located
in the load server’s file share directory. These files may either be native binary files or ASCII text files
containing comma-separated values. This method is used for transferring to and from the database
large quantities of data, typically produced by one of the C++ software packages that perform more
intensive data processing tasks. The C++ software does not have direct access to the database through
an API, so relies upon the information stored within the SQL script files to determine the schema
format for both creating and reading these flat-file tables. Irrespective of the file format, for the
flat-file table data to be inserted into a database table (an ‘ingest’) it must match the schema of that
table. For the outgest of table data into binary files it is also vital that the C++ code expects the
correct format to read the data. Therefore, it is imperative that the schema described by the SQL
script files always match the database schema. This aspect is also vital in many other aspects of the
software design where the code is ‘schema’ driven (section 6 provides further detail to the ‘schema’
driven design of the code).

All specific aspects of the system design described in section 3.2 are encapsulated in the Python
module, ‘wsatools.SystemConstants’. Herein lies the translation of the conceptual entities such as the
load server, its share directory, and the mass-storage disk array to real device names and paths. By
referencing these constants rather than, say, literal path names, the conceptual purpose of the code
becomes more clear, and the task of porting the software to an alternative system will be more simple.
Likewise a ‘wsatools.DbConstants’ Python module maintains the translations of conceptual database
entities such as the load database to their actual names. This module is automatically generated from
the database schema script, (VSA_InitiateArchive.sql).

4.2 Database Package

The database software package is a set of Python modules and classes developed for the VSA that
provide structured access to database data. The most significant components of the database package
are the interface module, the Session class, the Table class and the Ingester and Outgester classes.

VDF-WFA-VSA-009 , 1.0 , September 2006 7

Figure 2: The directory structure of the software CVS repository highlighting a selection of important
modules that are discussed in this document.

VDF-WFA-VSA-009 , 1.0 , September 2006 8

The interface module maintains a clean interface between the curation code and the database API. In
principle modifications to the interface module only are required to allow the code to use an alternate
database API.

The Session class maintains the connection to a specified database, and provides a set of useful access
methods to the database that are of a higher level than simply passing raw SQL statement scripts
to the database API. This class provides the public interface between the curation software and the
database. Upon instantiation of a Session class object a connection is made to the requested database
if such a connection does not already exist (the class keeps track of all open connections, and reuses
an existing connection if an identical connection request is made). Upon destruction of the Session
class object the connection will be closed if it is the latest such connection to the database.

Providing an additional database access wrapper interface, in the form of the Session class, not only
ensures correct use of the database connection and API, but also presents the software developer with
a convenient set of methods to interact with the database by supplying data in Python objects rather
than in long, obscure, SQL statements. Also, should the SQL standard or our DBMS change, then
only this API would need to be altered. Additionally, along this line of design, a Table class has
been designed to store the complete contents of a small curation database table, such as the survey
programme definition table, in a Python object for efficient access.

This package also provides Ingester and Outgester classes that handle the transfer of flat-file table data
into and out of the database via files located in the load server’s file share directory. In addition to
performing the file transfer and ingest, the Ingester class upon initialisation checks that the database
schema and that described by the SQL files are consistent. The Outgester class allows the software to
outgest the results of any database query to a binary or ASCII file, and contains a work around for
delays in the mounted NFS file share that can cause only partial data transfer to occur.

4.3 Curation Tasks

Figure 3: Inheritance diagram for the CuSession class.

The generic software design of all curation tasks is encapsulated with the CuSession class (see figure 3).
This class inherits the functionality of the Database package’s Session class, and extends it, providing
message logging and exception handling. All curation scripts inherit the parent class CuSession,
which automatically ensures all essential pre-/post-curation tasks are performed. For example, upon
initialisation of the curation session object:

• A database connection is opened (inherited).

• The database is locked.

• The Curation Use Case (CU) description is logged.

VDF-WFA-VSA-009 , 1.0 , September 2006 9

• A unique CU Event ID is created.

• A temporary working directory is created.

Upon completion of a curation session:

• A row describing this session and its outcome is written to the ArchiveCurationHistory table.

• The message log is written to a file in the curation log directory.

• The database connection is closed. (inherited)

• The database lock is removed.

• Temporary files are removed from the work space directory and the load server share directory.

Furthermore, curation tasks that perform programme specific curation derive from the ProgCuSession
class that inherits the CuSession class and extends it to also updates the ProgrammeCurationHistory
table. If the curation session failed for some reason a clear error message is presented to the operator.

Each curation use case script implements a class derived from a CuSession object, overriding the
_onRun() method to define the implementation of that use case. The procedural flow of the CuSession
class design is presented in figure 4.

All scripts at present are invoked from the command-line, and utilise the ‘wsatools.CLI’ module,
which provides a --help/-h option documenting the complete command-line interface for the script.
Using the object-oriented model given above, all scripts automatically inherit command-line arguments
and options from their parent classes. For example, all programme curation sessions inherit from
the ProgCuSession class, which provides a command-line argument to specify the unique ID of the
programme to be curated for this session.

4.4 Database Table Preparation

The C++ module ‘wfcamsrc’ has been developed as an object-oriented solution to preparing large
data tables for ingest into the database. It consists of three parts at present: ‘exmeta’ for preparing
tables of metadata, primarily from FITS header keyword values. ‘exnumeric’ for preparing detection
tables from FITS binary table data, and ‘mkmerge’ for preparing source tables from detection table
data. It is designed to work for data intensive tasks where very large flat-file tables are constructed
as binary or ASCII files for subsequent ingest into our relational database. A polymorphic design to
the code has been adopted through the creation of a series of different classes each designed to handle
the data in different, standard ways. The software is completely driven by the schema script files that
are discussed in section 6, which describe the data source and how the data should be manipulated
to be correctly formatted in the table for ingest. Hence, the schema describes which class to select to
format the data for a given table attribute.

4.5 Code Reference Documentation

A complete, interactive, API documentation for our software is provided on-line [2]. Please refer to
this documentation for a more detailed description of the software design. It is generated from the
latest source code, using epydoc for the Python software, and Doxygen for the C++ software. The
Python code is divide into two main packages: ‘wsatools’, the set of generic tools for archive curation,
and ‘invocations’ (see figure 5), which contains the scripts to perform each specific curation use case
(see figure 6).

VDF-WFA-VSA-009 , 1.0 , September 2006 10

Figure 4: A diagram detailing the run-time procedural flow of a curation session, from actual use case
script implementation, through to the CuSession class, and the Database.Session class.

VDF-WFA-VSA-009 , 1.0 , September 2006 11

Figure 5: Package structure UML diagram for generic archive tools package: wsatools. See [2] for the
latest version on-line.

VDF-WFA-VSA-009 , 1.0 , September 2006 12

Figure 6: Package structure UML diagram for curation use case invocation scripts package: invoca-
tions. See [2] for the latest version on-line.

VDF-WFA-VSA-009 , 1.0 , September 2006 13

5 CURATION USE CASES

The VSA curation use cases, identified in the Database Design Document, are a set of tasks carried
out by the archive operator. These encompass all processes by which data is ingested, processed
and rendered in a form suitable for user access. For every use case that is to implemented as a
software component we have developed a Python script. Table 2 provides a summary of every use
case, highlighting their current development status. In this section we describe the design of each
completed software component for performing curation use cases.

Curation
Use Case

Current Status Function

CU1 In WSA production use Obtain science data from CASU

CU2 In WSA production use Create library compressed image frame products

CU3 In WSA production use Ingest science and compressed image metadata

CU4 In WSA production use Ingest single frame source detections

CU5 Implemented Create library difference image frame products

CU6 In development Create/update synoptic source catalogues

CU7 In WSA production use Create/update merged source catalogues

CU8 In development Recalibrate photometry

CU9 In development Produce list measurements between passbands

CU10 To be developed for final phase Compute/update proper motions

CU11 To be developed for final phase Recalibrate astrometry

CU12 No software component required Get publicly released and/or consortium supplied
external catalogues

CU13 In WSA production use Create library stacked/mosaic image frame prod-
ucts

CU14 In WSA production use Create standard source detection list from any
new stacked/mosaiced image frame product

CU15 No software component required Run periodic curation tasks CU6–CU9

CU16 In WSA production use Create joins with external catalogues

CU17 To be developed for final phase Produce list driven measurements between WF-
CAM/VISTA and non-WFCAM/VISTA imaging
data

CU18 In WSA production use Create/recreate table indices

CU19/CU20 In WSA production use Release – place on-line new database product

CU21 In WSA production use Release non-survey data

Table 2: Curation task components for the VSA, denoting current status. NB: CU19 & CU20 are
combined into a single software component.

VDF-WFA-VSA-009 , 1.0 , September 2006 14

Included within the use cases are tasks involving database queries and operations that take place on
the Load Server along with image processing and data analysis applications that need to be invoked on
a Linux workstation. It was decided to implement all curation use cases on one workstation providing
a single point of entry for management of these tasks. As discussed in section 3.2, one of the PCs that
form a node of the mass storage system is used as the Curation Server.

A special curation use case is the ‘discovery’ mechanism whereby the operator identifies which curation
use cases need to be carried out at a particular time or when a given use case needs to be carried out.
This ‘Curation Discovery Tool’ will be implemented as a GUI tool for the operator, as the final stage
to the development of the VSA software. For more details and current progress see section 7.

CU Python Components C++ Components External Libraries

CU1 ProgCuSession None mxODBC, HPN-SSH

CU2 ProgCuSession wsatools.jpeg mxODBC, CFITSIO, jpeglib

CU3 ProgCuSession,
Database.Ingester,
helpers.ProvenanceFiller

wfcamsrc.exmeta mxODBC, PyFITS, CFITSIO, HTM,
AST, SLALIB

CU4 ProgCuSession,
Database.Ingester

wfcamsrc.exnumeric mxODBC, CFITSIO, HTM, AST,
SLALIB

CU7 SourceMerger,
Database.Ingester,
Database.Outgester

wfcamsrc.mkmerge,
wsatools.pairing

mxODBC, SLALIB, Lambert

CU13 ProgCuSession CASU.fitsio or
SWARP

mxODBC, PyFITS, SciPy, NumPy,
PyRAF, iraf.imstatistics

CU14 ProgCuSession CASU.cirdr or SEx-
tractor

mxODBC, PyFITS, SciPy, NumPy,
PyRAF

CU16 ProgCuSession,
Database.Ingester,
Database.Outgester

Matching mxODBC

CU18 ProgCuSession None mxODBC

CU19 ProgCuSession None mxODBC

CU21 ProgCuSession None mxODBC

Table 3: Software components implemented by each CU.

5.1 CU1

The CU1 script transfers data marked as OK_TO_COPY from the CASU servers to the VSA archive
file system. The software components implemented by this Python script are listed in table 3. A
special version of the publically available SSH tools, called High-Performance SSH (or HPN-SSH), is
utilised to the copy the data as it maximises the available network bandwith to maintain the best
possible transfer speed. The script has the option to run multiple download threads to optimise the
data transfer speed.

VDF-WFA-VSA-009 , 1.0 , September 2006 15

5.2 CU2

From a list of FITS images files, for a given date range and release version, the CU2 script, using
the C++ module ‘wsatools.jpeg’, produces compressed JPEG thumbnail images for every detector of
the multi-extension FITS images (see figure 7). Following CU3, the location of the compressed image
product is then inserted into the record for that detector in table MultiframeDetector. The software
components implemented by this Python script are listed in table 3.

Figure 7: A flow-chart for CU2. Procedural flow is denoted by grey arrows, and data flow between
the database and Python/C++ software components by black arrows.

5.3 CU3

CU3 takes the list of new files transfered to the archive file system by CU1 and extracts the file
metadata to produce new records to insert into the Multiframe, MultiframeDetector, ProgrammeFrame
and CurrentAstrometry database tables (see figure 8). For each of these files the invocation Python
script calls the C++ programme exmeta (part of the wfcamsrc module, see section 4.4), which uses
the schemas for each of these tables to determine how to construct the table data based on the data
contained within the FITS headers (see section 6 for more information concerning schema driven
features, and table 4 for the list of schema dependencies for CU3). The data is constructed in a
ASCII file of comma-separated values, and then ingested into the database. The software components
implemented by this Python script are listed in table 3.

Figure 8: A flow-chart for CU3. Procedural flow is denoted by grey arrows, and data flow between
the database and Python/C++ software components by black arrows.

VDF-WFA-VSA-009 , 1.0 , September 2006 16

Schema Name Schema File Schema Tables

Multiframe Schema VSA_MultiframeSchema.sql Multiframe, MultiframeDetector,
Provenance

Curation Logs Schema VSA_CurationLogsSchema.sql ProgrammeFrame

Calibrations Schema VSA_CalibSchema.sql CurrentAstrometry

Table 4: Schemas that CU3 depends upon.

5.3.1 ProvenanceFiller

The set of multiframe data being ingested into the database at the time of CU3 invocation will not
necessarily include every component multiframe used to produce a particular combined multiframe
that is ingested into the database. Therefore, the provenance information for the combined multiframe
is not added to the Provenance database table until a later stage when the complete set of component
multiframes are available.

For this purpose a helper script, helpers.ProvenanceFiller, has been implemented to update the Prove-
nance table. It searches the database (very quickly - less than one minute) to determine which of the
existing combined multiframes listed in table Multiframe, have incomplete, or no, corresponding in-
formation in table Provenance. It then reads through every FITS file that corresponds to this list of
multiframes to extract the provenance information from the FITS header keywords.

Combined multiframes are defined as those with a frame type equal to stack, stackconf, leav, leavstack,
leavconf, leavstackconf, deepleavstack, or deepleavstackconf. We do not maintain provenance informa-
tion for dark and sky frames in the database. This is because they may be combined from intermediate
frames that are not ingested into the database.

5.4 CU4

CU4 takes the list of new files transfered to the archive file system by CU1 and extracts the binary
catalogue data to produce new records to insert into the programme detection database tables (see
figure 9). For each of these files the invocation Python script calls the C++ programme exnumeric
(part of the wfcamsrc module, see section 4.4), which uses the schemas for each of these tables to
determine how to construct the table data based on the data contained within the FITS binary table
(see section 6 for more information concerning schema driven features, and table 5 for the list of
schema dependencies for CU4). The data is constructed in a binary file for ingest into the database.
The software components implemented by this Python script are listed in table 3.

Figure 9: A flow-chart for CU4. Procedural flow is denoted by grey arrows, and data flow between
the database and Python/C++ software components by black arrows. Here the detection table for a
given programme ‘prog’ is created.

VDF-WFA-VSA-009 , 1.0 , September 2006 17

Schema Name Schema File Schema Tables

Programme Schema VSA_progSchema.sql progDetection

Table 5: Schemas that CU4 depends upon.

5.5 CU7

The CU7 script is an implementation of the SourceMerger class (see figure 10, to produce the merged
source tables for each survey programme. It queries the database to produce a list of multiframes
corresponding to the same field of observation but in different passbands (a unique combination of
filter and observational pass). The Database.Outgester class then outgests the programme detections
for each passband for each frame set in this list. The individual detections in these tables are then
paired by the wsatools.pairing C++ module, to produce a file listing the corresponding set of pointers
between detections in each passband. These pointers are then used by the wfcamsrc.mkmerge C++
module to produce a merged source table, that can then by ingested into the database. A programme
merge log table is then updated with the list of frame sets used to produce the programme source
table. All CU7 components (listed in table 3), and especially the C++ source table creator software,
mkmerge, are schema driven and depend upon the schema scripts listed in table 6.

Figure 10: A flow-chart for CU7. Procedural flow is denoted by grey arrows, and data flow between
the database and Python/C++ software components by black arrows. Here the source table for a
given programme ‘prog’ is created, from the detections of each passband, ’F’, a unique combination
of filter and pass.

Schema Name Schema File Schema Tables

Curation Tables Schema VSA_InitiateArchive.sql RequiredFilters

Programme Schema VSA_progSchema.sql progSource, progMergeLog

Table 6: Schemas that CU7 depends upon.

VDF-WFA-VSA-009 , 1.0 , September 2006 18

Figure 11: A flow-chart for CU13. Procedural flow is denoted by grey arrows, and data flow between
the database and Python/C++ software components by black arrows.

5.6 CU13

The CU13 script uses the CASU FITS image production tools, to create both the new deep stacked
images and mosaiced images, for each programme that list entries in the database tables Required-
Stacks and RequiredMosaics respectively (see figure 11). The software components implemented by
this Python script are listed in table 3.

The deep stacks are formed from a list of intermediate stacks of the same filter that meet the data
quality criteria given in the RequiredStacks table. Furthermore, the provenance history of each in-
termedia stack is used to ensure that deep stacks are not formed from any duplicated frames. Both
the new deep stacks and their confidence images are then produced using the CASU.fitsio_stack

software tool, from the list of intermediate stacks and corresponding confidence images. The FITS
header keywords of the deep stack image files are then prepared prior to database ingest by CU3, in
the usual manner (described in section 5.3).

Mosaiced images from the same filter are produced from a list of the most recent adjacent deep stacked
images. Unless specified otherwise by the RequiredMosaics table, the CASU.fitsio_mosaic software
tool is used to construct the mosaiced images, which alters the background of each image to the same
level based on the individual frame background measurements calculated by imstatistics an iraf
software tool. If specified by the RequiredMosaics table, the external software tool, SWARP, may be
used to produce the mosaiced image as an alternative to CASU.fitsio_mosaic. In our current design,
if the mosaic is larger than 2 GB it is split into parts, the number of parts being an integer square such
that each part has a size of approximately 1 GB. This is to overcome possible problems caused by the
2 GB file size limitation on 32-bit PCs. Finally, the FITS header keywords of the mosaiced image files
are then prepared prior to database ingest by CU3, in the usual manner (described in section 5.3).

5.7 CU14

Source detection catalogues for the new image products produced by CU13 are created by the CU14
script, using the same source extractor tool as was used to produce the standard image catalogues
from CASU. For ultra-deep stacks the SExtractor software tool is used an alternative. A set of source
extraction parameters are retrieved from the RequiredStacks and RequiredMosiacs tables for the deep
stack and mosaic images respectively (see figure 12, and table 3 for the list of software components
used by CU14). Ingest of these new detection catalogues proceeds in the usual manner using CU4 as
described in section 5.4.

VDF-WFA-VSA-009 , 1.0 , September 2006 19

Figure 12: A flow-chart for CU14. Procedural flow is denoted by grey arrows, and data flow be-
tween the database and Python/C++ software components by black arrows. Here source detection
catalogues for the new deep stack and mosaic image products for a given programme ‘prog’ are created.

5.8 CU16

The CU16 script creates joins between the survey source tables and the external catalogue source
tables, such as the SDSS, SSA, and 2MASS. The software components implemented by this Python
script are listed in table 3, and the procedural flow diagram for this CU is illustrated in figure 13.
The script is completely driven by the database table ‘RequiredJoins’, creating neighbour tables with
schemas defined in (VSA_NeighboursSchema.sql). The full list of schema dependencies is provided
in table 7.

To produce these neighbour tables we utilise a customised version of a CSIRO-developed catalogue
matching code, the C++ ‘Matching’ code [1]. The algorithm used by this code, scales as O(N log M),
where N and M are the respective sizes (i.e. number of rows) of the two catalogues, making it the
most efficient method for comparing two extremely large catalogues. This method is particularly
well suited when two catalogues are of comparable size as the largest catalogue dictates the overall
performance of the code, as it always scales as N . On our system this software is I/O limited meaning
the performance is completely dominated by the read / write speed of the data, with the CPU not
being used to full capacity. 1

The source matching code is external C++ software and so cannot access the database. There-
fore,source matching is performed on outgest binary files containing just the unique source IDs and
position co-ordinates. Binary files provide the best I/O access performance, and are much more ef-
ficient than database operations. These source position tables are permanently stored on the mass

1As a benchmark an internal neighbour search of 109 sources within a radius of 10 arcseconds took ∼ 5 hours on our

2.4 Ghz Pentium 4 PC.

Schema Name Schema File Schema Tables

Curation Tables Schema VSA_InitiateArchive.sql RequiredNeighbours, ExternalSurvey,
ExternalSurveyTable

Neighbour Tables Schema VSA_NeighboursSchema.sql Neighbour table definition

Table 7: Upon the addition of a new external catalogue neighbour join, the above schemas would
require updating for CU16.

VDF-WFA-VSA-009 , 1.0 , September 2006 20

Figure 13: A flow-chart for CU16. Procedural flow is denoted by grey arrows, and data flow between
the database and Python/C++ software components by black arrows. Here the neighbour tables
for a given programme ‘prog’ are created, consisting of a self-neighbour table, and various cross-
matched neighbour tables with external catalogues ‘ext’ that are stored as source position flat-file
tables in the file system following an earlier outgest. To outgest external surveys the ExternalSurvey,
ExternalSurveyTable tables are also queried prior to the outgest of the external catalogue’s source
table. In the case of producing a cross-match neighbour table with the SDSS survey, additional
attributes are queried from the original source table and appended to the ingested neighbour table.

VDF-WFA-VSA-009 , 1.0 , September 2006 21

storage raid array for each of the external catalogues. Outgest of the VSA source postion tables for the
current programme occurs upon each invocation of the CU16 script. All source position table files are
sorted by declination on outgest – a requirement of the source matching algorithm. Also each binary
file (extension ‘.dat’) is accompanied by a corresponding data-type definition (extension ‘.dtd’) ASCII
file, that contains the field sizes for the source ID and co-ordinates fields. These can vary between
external catalogues and so the code needs to know the field sizes.

5.9 CU18

The purpose of this curation use case is to ensure that every database table has the full set of required
indices defined prior to public release. This list of indices for every table is maintained in an SQL
script called VSA_Indices.sql. The CU18 Python script simply parses this SQL script, creating every
missing index on each table.

5.10 CU19

A Python script invoking a series of database execution statements implements this CU; the public
release of database products. Following a verification that the last entry in the ProgrammeCura-
tionHistory table for each survey programme corresponds to the final required curation task, a release
database is produced from a copy of the curation database on the catalogue load server. The copy
is created by backing up the curation database, and then restoring its contents to the new release
database, thus ensuring a backup of the curation database is made prior to release. This release
database is then trimmed of any superfluous tables and data that are only required for curation pur-
poses, before being copied to the public catalogue server. In addition to updating the both archive
and programme curation histories, CU19 also updates a release history table, Release.

5.11 CU21

The software implementation of CU21, the preparation of non-survey, proprietary databases, consists
of a series of Python scripts. These scripts take the registration details submitted through the archive
web interface by the principal investigators of each new non-survey and produce SQL schema files for
the creation of the relevant database tables for this non-survey. Entries are placed into the database
to denote the new programmes (in tables Survey and Programme), and the SQL schema files for the
curation tables that drive CU3 and CU4 are modified. Following successful completion of the CU21
scripts the ingest of the non-survey programme data by CUs 3 & 4 may occur in the usual way.

VDF-WFA-VSA-009 , 1.0 , September 2006 22

6 DATA FLOW

This section provides a collection of useful reference notes concerning the flow of data from its original
format in the FITS file supplied by CASU to the final released format in the VSA public database.

6.1 Schema-driven code features

The database schema is described by a set of SQL script files. From these files the database tables are
created, updated, and documented on the public web server. They may either be directly “played” on
the database, or parsed by the Python/C++ code. The database schema describes the data, its format
and its purpose. Much of the code developed for the science archive uses these files to determine the
correct format for the data that is to be inserted or selected from the database, and to create new

Table metadata

--/H Table header for schema browser.

--/T Table text for schema browser.

Attribute format metadata

--/D Attribute description.

--/C Attribute Unified Content Descriptor (UCD).

--/U Attribute units.

--/N Default value.

--/V List of allowed specific values provided as a sanity check.

--/R Range of values provided for range checking (deprecated).

--/X Maximum value sanity check (deprecated).

--/M Minimum value sanity check (deprecated).

Data source

--/K FITS header keyword from which to extract attribute value.

--/F FITS binary table TTYPE label from which to extract attribute value.

--/Q Name(s) of attributes used to compute this attribute (comma separated list of table-
name.attributename, a self-referencing --/Q tag requires some additional special parsing)

--/L HTM level to compute HTM index to.

Schema browser specifics

--/I Tooltip text for schema browser.

--/G Glossary information is provided (tablename::attributename format)

--/S Flag to tick a checkbox as a default; no parameter given

--/O Omit the given FITS Keyword (--/K) in the browser description; no parameter given

Table 8: Comment tags used to annotate the SQL schema script files.

VDF-WFA-VSA-009 , 1.0 , September 2006 23

CREATE TABLE MultiframeDetector(

--/H Details for individual detector frames that are part of a multiframe.

--/T Required constraints: primary key is (multiframeID,extNum)

--/T (multiframeID) references Multiframe(multiframeID)

multiframeID bigint not null default -99999999,

--/D the UID of the relevant multiframe

--/C ID_FRAME

extNum tinyint not null default 0,

--/D the extension number of this frame

--/C NUMBER --/Q fitsfile

cuEventID int not null default -99999999,

--/D UID of curation event giving rise to this record

--/C REFER_CODE

compFile varchar(256) not null default ’NONE’,

--/D Filename of the compressed image of this image frame, eg.

server:/path/filename.jpg

--/C ID_FILE --/Q deviceID

julianDayNum int not null default -99999999,

--/D the Julian Day number of the UKIRT night

--/U Julian days --/C TIME_DATE --/K UTDATE --/Q julianDayNum

--/R 2453280,None

camNum int not null default -99999999,

--/D Number of WFCAM camera (1, 2, 3 or 4)

--/C ID_PLATE --/K IMAGE.CAMNUM

filterID tinyint not null default 0,

--/D UID of combined filter (assigned in WSA: 1=Z, 2=Y, 3=J,

4=H, 5=K, 6=H2, 7=Br, 8=blank)

--/C INST_FILTER_CODE --/K FILTER --/Q filterID

--/V Z,Y,J,H,K,H2,1-0S1,Br,BGamma,Blank

runID varchar(256) not null default ’NONE’,

--/D Name of CASU raw data file

--/C ID_FILE --/K IMAGE.RUNID --/N NONE

creationDate datetime not null default ’31-Dec-9999’,

--/D Creation date/time of file

--/C ?? --/U MM-DD-YYYY:hh:mm:ss.sss --/K IMAGE.DATE

--/N 12-31-9999

imageExtName varchar(16) not null default ’NONE’,

--/D Extension name in source FITS image file

--/C ?? --/K IMAGE.XTENSION --/N NONE

skySubScale float not null default -0.9999995e9,

--/D Scale factor applied to sky subtraction image

--/C ?? --/K IMAGE.SKYSUB --/N -0.9999995e9 --/Q skySubScale

morphClassFlag tinyint not null default 0,

--/D Image morphological classifier flag, set if the classifier

has been run. If so an object classification flag and a

stellarness index is included in the binary table columns.

--/C CODE_MISC --/K BINTABLE.CLASSIFD --/N 0

Figure 14: An extract from showing part of the schema for the table MultiframeDetector in the WSA.

VDF-WFA-VSA-009 , 1.0 , September 2006 24

database tables as required. We therefore describe our science archive curation code as being “schema
driven”. This way the schema is free to evolve without requiring additional code maintenance.

Presented in figure 14 is an example SQL script file, showing part of the CREATE TABLE procedure
for the table, MultiframeDetector, which stores pertinent metadata for individual detector images (or
frames) of the observed paw print (as opposed to metadata that is applicable to the entire pointing).
In addition to the standard SQL directives that describe the data (attribute name, attribute type,
allow null values, and a default value), we annotate each attribute with a series of comment tags (the
“--” sequence denotes a comment in SQL). The full list of tags is given in table 8. These tags tell our
software how to handle the data, most importantly where to obtain the data. For example the data in
the database may just be a straight copy of the values given in the FITS header keywords. For some
attributes these FITS keyword values are parsed and presented in a slightly different format. Some
data is taken from binary catalogue data, other attributes are calculated from pre-existing attribute
values. Specific attribute examples are provided in the following sections.

6.2 Programmes

Every observation should be assigned to a programme, and as such every FITS file contains a keyword,
value pair giving the programme name. For the UKIDSS surveys these were in form u/ukidss/las,
for the LAS (Large Area Survey), for example. However, the values provided by the FITS files would
often contain additional character appended to the end of the expected programme name. In addition,
every survey programme had a corresponding science verification programme with a name such as
u/ukidss/las_sv. Non-survey programme names are given as u/05a/3, u/05a/37 etc. Finally the
calibration programme would present its name as either CAL or UKIRTCAL.

Due to the addition of random characters following the main survey names, we cannot identify pro-
gramme names (and subsequently determine the correct unique programme ID for the ingest into the
database) with just a simple algorithm that performs a direct comparison. Furthermore, a simple
“character string starts with” or “character string contains” type comparison would fail to correctly
assign the programme IDs for either the calibration programmes or the non-survey programmes.
Therefore, in every case where we wish to identify a programme name from the original value supplied
by the FITS header keyword, we use the following algorithm:

if programme name starts with "u/ukidss":

if "_sv" in programme name:

programme name is programme name with all characters after _sv removed

else:

if any of the survey names is in programme name then that survey name is

the programme name

else if programme name starts with "u/ec/":

if any of the programmes with names that start with "u/ec/" is in

programme name then that name is the programme name

else if programme name is "UKIRTCAL":

programme name is "CAL"

VDF-WFA-VSA-009 , 1.0 , September 2006 25

else:

programme name is programme name

This is applied to both the Python software and the C++ software.

VDF-WFA-VSA-009 , 1.0 , September 2006 26

7 THE CURATION DISCOVERY TOOL

One of the outcomes of the Critical Design Review identified the need for a use case discovery tool.
This tool is in development and will eventually carry out a number of tasks including:

• view the state of the system at a given time

• list the tasks need to be carried out a given time

• determine whether or not a given use case needs to be carried out

• notify the archive scientist at any time a particular use case needs to be carried out.

A graphical user interface (GUI) has been developed, and screenshots of the GUI tool in use are
presented in figures 15, 16, and 17.

VDF-WFA-VSA-009 , 1.0 , September 2006 27

Figure 15: The main window providing immediate access to the status of curation use case tasks, the
present job list, individual programme status, and a query the archive curation logs.

Figure 16: The Programme Status window listing the current status of every programme, detailing
which curation tasks have been completed.

Figure 17: The curation log displayed by the query tool, presenting a list of the most recent completed
curation tasks.

VDF-WFA-VSA-009 , 1.0 , September 2006 28

References

[1] Abel, D. J., Devereux, D., Power, R. A., & Lamb, P. R. 2004, An O(N log M) algorithm for
catalogue matching. Technical Report TR- 04/1846, CSIRO ICT Centre, Canberra, Australia.

[2] On-line VSA code documentation, http://www.roe.ac.uk/˜rsc/wsa/

[3] CVS repository for VSA code, http://cvs.roe.ac.uk/cgi-bin/viewcvs.cgi/?cvsroot=WFAU

A ACRONYMS & ABBREVIATIONS

2MASS : Two-Micron All-Sky Survey
ADnn : Applicable Document No nn
API : Application Programming Inferface
ASCII : American Standard Code for Information Interchange
CASU : Cambridge Astronomical Survey Unit
CSIRO : Commonwealth Scientific and Industrial Research Organisation
CU : Curation Use Case
CVS : Concurrent Versions System
DBMS : Database Management System
FITS : Flexible Image Transport System
GB : Gigabyte
GUI : Graphical User Interface
HTM : Hierarchical Triangular Mesh
HTTP : Hypertext Transfer Protocol
ID : Identifier
I/O : Input/Output
JPEG : Joint Photographic Experts Group
NFS : Network File System
ODBC : Open Database Connectivity
OS : Operating System
PC : Personal Computer
SDSS : Sloan Digital Sky Survey
SQL : Structured Query Language
SSA : SuperCOSMOS Science Archive
SSH : Secure Shell
UCD : Unified Content Descriptor
UK : United Kingdom
UKIRT : UK Infrared Telescope
UML : Unified Modelling Language
VISTA : Visible and Infrared Survey Telescope for Astronomy
VSA : VISTA Science Archive
WFAU : Wide Field Astronomy Unit (Edinburgh)
WFCAM : Wide Field Camera for UKIRT surveys
WSA : WFCAM Science Archive

VDF-WFA-VSA-009 , 1.0 , September 2006 29

B APPLICABLE DOCUMENTS

AD01 Hardware/OS/DBMS VDF-WFA-VSA-006
Issue: 1.0 09/06

AD02 Database Design VDF-WFA-VSA-007
Issue: 1.0 09/06

AD03 User Interface VDF-WFA-VSA-008
Issue: 1.0 09/06

C CHANGE RECORD

Issue Date Section(s) Affected Description of Change/Change Request
Reference/Remarks

1.0 Draft 01/09/06 All New document

1.0 29/09/06 All Released document

D NOTIFICATION LIST

The following people should be notified by email whenever a new version of this document has been
issued:

WFAU: P Williams, N Hambly

CASU: M Irwin, J Lewis

QMUL: J Emerson

ATC: M. Stewart

JAC: A. Adamson

UKIDSS: S. Warren, A. Lawrence

oOo

